Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
While plant genome analysis is gaining speed worldwide, few plant genomes have been sequenced and analyzed on the African continent. Yet, this information holds the potential to transform diverse industries as it unlocks medicinally and industrially relevant biosynthesis pathways for bioprospecting. Considering that South Africa is home to the highly diverse Cape Floristic Region, local establishment of methods for plant genome analysis is essential. Long-read sequencing is becoming standard procedure for plant genome research, as these reads can span repetitive regions of the DNA, substantially facilitating reassembly of a contiguous genome. With the MinION, Oxford Nanopore offers a cost-efficient sequencing method to generate long reads; however, DNA purification protocols must be adapted for each plant species to generate ultra-pure DNA, essential for these analyses. Here, we describe a cost-effective procedure for the extraction and purification of plant DNA and evaluate diverse genome assembly approaches for the reconstruction of the genome of rooibos (), an endemic South African medicinal plant widely used for tea production. We discuss the pros and cons of nine tested assembly programs, specifically Redbean and NextDenovo, which generated the most contiguous assemblies, and Flye, which produced an assembly closest to the predicted genome size.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416007 | PMC |
http://dx.doi.org/10.3390/plants11162156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!