Cannabis Seedlings Inherit Seed-Borne Bioactive and Anti-Fungal Endophytic Bacilli.

Plants (Basel)

Irving K. Barber Faculty of Science, University of British Columbia Okanagan, Kelowna, BC V1V 1V7, Canada.

Published: August 2022

Throughout the hundreds of millions of years of co-evolution, plants and microorganisms have established intricate symbiotic and pathogenic relationships. Microbial communities associated with plants are in constant flux and can ultimately determine whether a plant will successfully reproduce or be destroyed by their environment. Inheritance of beneficial microorganisms is an adaptation plants can use to protect germinating seeds against biotic and abiotic stresses as seedlings develop. The interest in Cannabis as a modern crop requires research into effective biocontrol of common fungal pathogens, an area that has seen little research. This study examines the seed-borne endophytes present across 15 accessions of Cannabis grown to seed across Western Canada. Both hemp and marijuana seedlings inherited a closely related group of bioactive endophytic Bacilli. All Cannabis accessions possessed seed-inherited Paenibacillus mobilis with the capacity to solubilize mineral phosphate. Additionally, seeds were found to carry genera of fungal isolates known to be Cannabis pathogens and post-harvest molds: Alternaria, Penicillium, Cladosporium, Chaetomium, Aspergillus, Rhizopus, and Fusarium. Thirteen seed-borne endophytes showed antibiotic activity against Alternaria, Aspergillus, Penicillium, and Fusarium. This study suggests both fungal pathogens and bacterial endophytes that antagonize them are vectored across generations in Cannabis as they compete over this shared niche.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415172PMC
http://dx.doi.org/10.3390/plants11162127DOI Listing

Publication Analysis

Top Keywords

endophytic bacilli
8
fungal pathogens
8
seed-borne endophytes
8
cannabis
6
cannabis seedlings
4
seedlings inherit
4
inherit seed-borne
4
seed-borne bioactive
4
bioactive anti-fungal
4
anti-fungal endophytic
4

Similar Publications

Researchers have reported that Bacillus megaterium BM18-2 reduces Cd toxicity in Hybrid Pennisetum, but understanding the interaction between plants and associated endophytes is crucial for understanding phytoremediation strategies under heavy metal stress. The current study aims to monitor the colonization patterns of GFP-labeled endophytic bacteria BM18-2 on Hybrid Pennisetum grass. Additionally, it will monitor Cd's effect on plant bacterial colonization.

View Article and Find Full Text PDF

Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.

View Article and Find Full Text PDF

Endophytic microbes in medicinal plants often possess beneficial traits for plant health. This study focuses on the bacterial endophyte strain B.L.

View Article and Find Full Text PDF

Submerged plants can thrive entirely underwater, playing a crucial role in maintaining water quality, supporting aquatic organisms, and enhancing sediment stability. However, they face multiple challenges, including reduced light availability, fluctuating water conditions, and limited nutrient access. Despite these stresses, submerged plants demonstrate remarkable resilience through physiological and biochemical adaptations.

View Article and Find Full Text PDF

The widespread use of pesticides to manage has led to significant challenges. This insect has developed resistance to 47 active insecticide ingredients. Therefore, endophytic entomopathogenic bacteria have been explored as an alternative pest management strategy, offering the potential to reduce reliance on chemical pesticides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!