Progress in 3D Bioprinting Technology for Osteochondral Regeneration.

Pharmaceutics

NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.

Published: July 2022

Osteochondral injuries can lead to osteoarthritis (OA). OA is characterized by the progressive degradation of the cartilage tissue together with bone tissue turnover. Consequently, joint pain, inflammation, and stiffness are common, with joint immobility and dysfunction being the most severe symptoms. The increase in the age of the population, along with the increase in risk factors such as obesity, has led OA to the forefront of disabling diseases. In addition, it not only has an increasing prevalence, but is also an economic burden for health systems. Current treatments are focused on relieving pain and inflammation, but they become ineffective as the disease progresses. Therefore, new therapeutic approaches, such as tissue engineering and 3D bioprinting, have emerged. In this review, the advantages of using 3D bioprinting techniques for osteochondral regeneration are described. Furthermore, the biomaterials, cell types, and active molecules that are commonly used for these purposes are indicated. Finally, the most recent promising results for the regeneration of cartilage, bone, and/or the osteochondral unit through 3D bioprinting technologies are considered, as this could be a feasible therapeutic approach to the treatment of OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414312PMC
http://dx.doi.org/10.3390/pharmaceutics14081578DOI Listing

Publication Analysis

Top Keywords

osteochondral regeneration
8
pain inflammation
8
progress bioprinting
4
bioprinting technology
4
osteochondral
4
technology osteochondral
4
regeneration osteochondral
4
osteochondral injuries
4
injuries lead
4
lead osteoarthritis
4

Similar Publications

Effect of regional crosstalk between sympathetic nerves and sensory nerves on temporomandibular joint osteoarthritic pain.

Int J Oral Sci

January 2025

Department of Stomatology, Tangdu Hospital & State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, School of Stomatology, The Fourth Military Medical University, Xi'an, China.

Temporomandibular joint osteoarthritis (TMJ-OA) is a common disease often accompanied by pain, seriously affecting physical and mental health of patients. Abnormal innervation at the osteochondral junction has been considered as a predominant origin of arthralgia, while the specific mechanism mediating pain remains unclear. To investigate the underlying mechanism of TMJ-OA pain, an abnormal joint loading model was used to induce TMJ-OA pain.

View Article and Find Full Text PDF

Prevalence of osteoarthritis has been increasing in aging populations, which has necessitated the use of advanced biomedical treatments. These involve grafts or delivering drug molecules entrapped in scaffolds. However, such treatments often show suboptimal therapeutic effects due to poor half-life and off-target effects of drug molecules.

View Article and Find Full Text PDF

LIPUS activated piezoelectric pPLLA/SrSiO composite scaffold promotes osteochondral regeneration through P2RX1 mediated Ca signaling pathway.

Biomaterials

January 2025

Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, 500 Quxi Road, Shanghai, 200011, China. Electronic address:

Addressing the concurrent repair of cartilage and subchondral bone presents a significant challenge yet is crucial for the effective treatment of severe joint injuries. This study introduces a novel biodegradable composite scaffold, integrating piezoelectric poly-l-lactic acid (pPLLA) with strontium-enriched silicate bioceramic (SrSiO). This innovative scaffold continually releases bioactive Sr and SiO ions while generating an electrical charge under low-intensity pulsed ultrasound (LIPUS) stimulation, a clinically recognized method.

View Article and Find Full Text PDF

Decellularized cartilage tissue bioink formulation for osteochondral graft development.

Biomed Mater

January 2025

Department of Orthopaedic Surgery, University of Connecticut, Chemical, Materials & Biomolecular Engineering MC-3711, ARB7-E7018, 263 Farmington Avenue, Farmington, CT 06032, USA, Storrs, Connecticut, 06269, UNITED STATES.

Articular cartilage and osteochondral defect repair and regeneration presents significant challenges to the field of tissue engineering (TE). TE and regenerative medicine strategies utilizing natural and synthetic-based engineered scaffolds have shown potential for repair, however, they face limitations in replicating the intricate native microenvironment and structure to achieve optimal regenerative capacity and functional recovery. Herein, we report the development of a cartilage extracellular matrix (ECM) as a printable biomaterial for tissue regeneration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!