IL-1 Receptor Antagonist (IL-1Ra) Levels and Management of Metabolic Disorders.

Nutrients

Faculty of Medicine, Clinicum, University of Helsinki and Helsinki University Hospital, Haartmaninkatu 4, P.O. Box 340, FIN-00029 Helsinki, Finland.

Published: August 2022

Low-grade inflammation is a major player in obesity and the metabolic syndrome predicting development of type 2 diabetes (T2DM). The interleukin-1 receptor antagonist (IL-1Ra) is a vital and natural anti-inflammatory factor and mediator in glucose homeostasis disturbances. The predictive role is independent of multiple confounders, and elevated levels appear few years before T2DM. The role of IL-1Ra is important for accumulated risk factors, dysregulated metabolism and glucose homeostasis, and dietary interventions. Longitudinal and cross-sectional population study cohorts have enabled the approximation of IL-1Ra limit values for metabolic dysregulation and guide further analysis as a potential biomarker. The limit value of IL-1Ra is reaching 400 pg/mL with prediabetes and before T2DM. However, subjects with metabolic syndrome are suggested to have lower limit values, especially among men. Future research may evaluate the role of IL-1Ra in actual glucose homeostasis together with routine fasted laboratory tests, such as glucose and C-reactive protein (CRP) instead of the oral glucose tolerance test. The significance of intermediate low IL-1Ra levels in metabolic abnormalities should be further analyzed. It is possible to specify the impact of multiple lifestyle and metabolic parameters together with age and sex. IL-1Ra could be studied in multiple approaches including interventional studies of metabolic diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415765PMC
http://dx.doi.org/10.3390/nu14163422DOI Listing

Publication Analysis

Top Keywords

glucose homeostasis
12
receptor antagonist
8
il-1ra
8
antagonist il-1ra
8
il-1ra levels
8
metabolic syndrome
8
role il-1ra
8
limit values
8
metabolic
7
glucose
5

Similar Publications

Role of hepatocyte-specific FOXO1 in hepatic glucolipid metabolic disorders induced by perfluorooctane sulfonate.

Environ Pollut

January 2025

Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Hebei Province, Shijiazhuang, 050017, PR China. Electronic address:

Perfluorooctane sulfonate (PFOS), a prevalent perfluoroalkyl substance (PFAS), is widely present in various environmental media, animals, and even human bodies. It primarily accumulates in the liver, contributing to the disruption of hepatic metabolic homeostasis. However, the precise mechanism underlying PFOS-induced hepatic glucolipid metabolic disorders remains elusive.

View Article and Find Full Text PDF

Purpose: The incidence of vascular dementia (VaD), as one of the main types of dementia in old age, has been increasing year by year, and exploring its pathogenesis and seeking practical and effective treatment methods are undoubtedly the key to solving this problem. Phosphoglycerate translocase 5 (PGAM5), as a crossroads of multiple signaling pathways, can lead to mitochondrial fission, which in turn triggers the onset and development of necroptosis, and thus PGAM5 may be a novel target for the prevention and treatment of vascular dementia.

Methods: Animal model of vascular dementia was established by Two-vessel occlusion (2-VO) method, and cellular model of vascular dementia was established by oxygen glucose deprivation (OGD) method.

View Article and Find Full Text PDF

Obesity-induced muscle alterations, such as inflammation, metabolic dysregulation, and myosteatosis, lead to a decline in muscle mass and function, often resulting in sarcopenic obesity. Currently, there are no definitive treatments for sarcopenic obesity beyond lifestyle changes and dietary supplementation. Feruloylacetone (FER), a thermal degradation product of curcumin, and its analog demethoxyferuloylacetone (DFER), derived from the thermal degradation of bisdemethoxycurcumin, have shown potential antiobesity effects in previous studies.

View Article and Find Full Text PDF

Weight cycling exacerbates glucose intolerance and hepatic triglyceride storage in mice with a history of chronic high fat diet exposure.

J Transl Med

January 2025

Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.

Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!