Alzheimer's disease (AD) is a common neurodegenerative disorder that causes dementia and affects millions of people worldwide. The mechanism underlying AD is unclear; however, oxidative stress and mitochondrial biogenesis have been reported to be involved in AD progression. Previous research has also reported the reduction in mitochondrial biogenesis in the brains of patients with AD. Quercetin (QE), a type of polyphenol, has been found to be capable of increasing mitochondrial biogenesis in the body. Accordingly, we explored whether QE could reduce amyloid beta (Aβ) accumulation caused by hydrogen peroxide (HO)-induced oxidative stress in SH-SY5Y cells. Our results revealed that QE stimulated the expression of mitochondrial-related proteins such as SIRT1, PGC-1α, and TFAM and subsequently activated mitochondrial biogenesis. Additionally, QE increased ADAM10 expression but reduced HO-induced reactive oxygen species production, apoptosis, β-site amyloid precursor protein cleaving enzyme 1 expression, and Aβ accumulation in the SH-SY5Y cells. These findings indicate that QE can effectively elevate mitochondrial biogenesis-related proteins and reduce the damage caused by oxidative stress, making it a promising option for protecting neuronal cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414536PMC
http://dx.doi.org/10.3390/nu14163310DOI Listing

Publication Analysis

Top Keywords

mitochondrial biogenesis
20
sh-sy5y cells
12
oxidative stress
12
aβ accumulation
8
mitochondrial
6
biogenesis
5
quercetin increases
4
increases mitochondrial
4
biogenesis reduces
4
reduces free
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!