AI Article Synopsis

  • * By introducing 30 vol.% large AZ61 particles as a soft phase into a matrix reinforced with Ni-coated CNTs, researchers created a hierarchical composite that significantly improved fracture strain by 54% and compressive strength by 8% compared to traditional composites.
  • * The improved properties are attributed to the combined effects of the hard phase bearing load and the soft phase providing ductility, while increased CNT content enhances the strength but leads to reduced fracture strain due to stress concentration and agglomeration issues.

Article Abstract

Carbon nanotube-reinforced magnesium matrix (CNTs/Mg) composite has great application potential in the transportation industry, but the trade-off between strength and ductility inhibits its widespread application. In order to balance the strength and plasticity of the composite, in this work, on the basis of the AZ61 matrix composite homogeneously reinforced by Ni-coated CNTs (hard phase), 30 vol.% large-size AZ61 particles are introduced as an isolated soft phase to fabricate hierarchical CNTs/AZ61 composites. The compression tests show the fracture strain and compressive strength of this composite increases by 54% and 8%, respectively, compared with homogeneous CNTs/AZ61 composite. During deformation, the hard phase is mainly responsible for bearing the load and bringing high strength, due to the precipitation of the MgAl phase, uniformly dispersed CNT and strong interfacial bonding of the CNTs/Mg interface through nickel plating and interfacial chemical reaction. Furthermore, the toughening of the soft phase results in high ductility. With the increase in CNT content, the compressive strength of composites is nearly unchanged but the fracture strain gradually decreases due to the stress concentration of CNT and its agglomeration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412418PMC
http://dx.doi.org/10.3390/nano12162877DOI Listing

Publication Analysis

Top Keywords

soft phase
16
phase carbon
8
az61 matrix
8
matrix composite
8
isolated soft
8
hard phase
8
fracture strain
8
compressive strength
8
phase
7
composite
6

Similar Publications

Background:  Circulating tumor cells and clusters (CTC) from soft-tissue sarcoma (STS) that become entrapped in the lung can form micro-metastases and lead to pulmonary metastatic disease. Many patients with localized high-risk STS later develop metastases. Radiation is effective at reducing local recurrence by eradicating microscopic infiltration and satellites in the reactive zone surrounding the primary tumor.

View Article and Find Full Text PDF

Surface Template Realizing Oriented Perovskites for Highly Efficient Solar Cells.

Adv Mater

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China.

Formamidinium lead iodide (FAPbI) perovskite films, ensuring optically active phase purity with uniform crystal orientation, are ideal for photovoltaic applications. However, the optically active α-FAPbI phase is easy to degrade into δ-phase due to numerous defects within randomly oriented films. Here, a "quasi-2D" perovskite template is pre-deposited on the film surface within the crystallization process based on the two-step preparation technology, which directly induced pure and highly orientated crystallization of α-FAPbI across the downward growth process.

View Article and Find Full Text PDF

Coaxial Direct Ink Writing of Cholesteric Liquid Crystal Elastomers in 3D Architectures.

Adv Mater

January 2025

Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, PA, 19104, USA.

Cholesteric liquid crystal elastomers (CLCEs) hold great promise for mechanochromic applications in anti-counterfeiting, smart textiles, and soft robotics, thanks to the structural color and elasticity. While CLCEs are printed via direct ink writing (DIW) to fabricate free-standing films, complex 3D structures are not fabricated due to the opposing rheological properties necessary for cholesteric alignment and multilayer stacking. Here, 3D CLCE structures are realized by utilizing coaxial DIW to print a CLC ink within a silicone ink.

View Article and Find Full Text PDF

Modification of Liposomal Properties by an Engineered Gemini Surfactant.

Langmuir

January 2025

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.

Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!