A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters. | LitMetric

Perfect Photon Indistinguishability from a Set of Dissipative Quantum Emitters.

Nanomaterials (Basel)

Instituto de Micro y Nanotecnología, INM-CNM, CSIC (CEI UAM+CSIC), Isaac Newton 8, Tres Cantos, E-28760 Madrid, Spain.

Published: August 2022

Single photon sources (SPS) based on semiconductor quantum dot (QD) platforms are restricted to low temperature (T) operation due to the presence of strong dephasing processes. Although the integration of QD in optical cavities provides an enhancement of its emission properties, the technical requirements for maintaining high indistinguishability () at high T are still beyond the state of the art. Recently, new theoretical approaches have shown promising results by implementing two-dipole-coupled-emitter systems. Here, we propose a platform based on an optimized five-dipole-coupled-emitter system coupled to a cavity which enables perfect at high T. Within our scheme the realization of perfect single photon emission with dissipative QDs is possible using well established photonic platforms. For the optimization procedure we have developed a novel machine-learning approach which provides a significant computational-time reduction for high demanding optimization algorithms. Our strategy opens up interesting possibilities for the optimization of different photonic structures for quantum information applications, such as the reduction of quantum decoherence in clusters of coupled two-level quantum systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414413PMC
http://dx.doi.org/10.3390/nano12162800DOI Listing

Publication Analysis

Top Keywords

single photon
8
quantum
5
perfect photon
4
photon indistinguishability
4
indistinguishability set
4
set dissipative
4
dissipative quantum
4
quantum emitters
4
emitters single
4
photon sources
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!