Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Nickel (Ni) leftovers arise from both catalyst application interventions and Ni alloy piping of the cooking oil industry (COI) being wasted as pollutants of freshwater bodies via discharged effluent. The current study assessed one of the indigenously feasible Ni removal systems comprising autochthonous Gomont (AP)-driven Ni phycoremediation cells (NPCs). After screening AP for hyperaccumulation in the Ni spiked solution, AP was transferred to the NPCs. Propagation of the AP inoculum was proportionate to the pollution load drop of COI with 22.97 and 55.07% drops in the biochemical (BOD) and chemical oxygen demand (COD), respectively. With the 0.11 bioconcentration factor, there was an uptake of 14.24 g mineral with 16.22% Ni removal and a 36.35 desorption ratio. The experimental data closely fitted with the Langmuir and Freundlich isotherms, respectively. The study concluded that could be taken for treatment of Ni-loaded industrial effluents at the microcosmic level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416505 | PMC |
http://dx.doi.org/10.3390/molecules27165353 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!