4-Acyl-1-pyrrole-2,3-diones fused at []-side with a heterocyclic moiety are suitable platforms for the development of a hetero-Diels-Alder-reaction-based, diversity-oriented approaches to series of skeletally diverse heterocycles. These platforms are known to react as oxa-dienes with dienophiles to form angular 6/6/5/6-tetracyclic alkaloid-like heterocycles and are also prone to decarbonylation at high temperatures resulting in generation of acyl(imidoyl)ketenes, bidentate aza- and oxa-dienes, which can react with dienophiles to form skeletally diverse products (angular tricyclic products or heterocyclic ensembles). Based on these features, we have developed an approach to two series of skeletally diverse 4-1,3-oxazines (tetracyclic alkaloid-like 4-1,3-oxazines and 5-heteryl-4-1,3-oxazines) via a hetero-Diels-Alder reaction of 4-acyl-1-pyrrole-2,3-diones fused at []-side with cyanamides. The products of these transformations are of interest for drug discovery, since compounds bearing 4-1,3-oxazine moiety are extensively studied for inhibitory activities against anticancer targets.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414543 | PMC |
http://dx.doi.org/10.3390/molecules27165257 | DOI Listing |
Org Lett
January 2025
Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.
Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, China.
Electroencephalogram (EEG) signals are important bioelectrical signals widely used in brain activity studies, cognitive mechanism research, and the diagnosis and treatment of neurological disorders. However, EEG signals are often influenced by various physiological artifacts, which can significantly affect data analysis and diagnosis. Recently, deep learning-based EEG denoising methods have exhibited unique advantages over traditional methods.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Computer Science, Northeast Electric Power University, Jilin 132012, China.
Satellites frequently encounter atmospheric haze during imaging, leading to the loss of detailed information in remote sensing images and significantly compromising image quality. This detailed information is crucial for applications such as Earth observation and environmental monitoring. In response to the above issues, this paper proposes an end-to-end multi-scale adaptive feature extraction method for remote sensing image dehazing (MSD-Net).
View Article and Find Full Text PDFSensors (Basel)
December 2024
SOTI Aerospace, SOTI Inc., Mississauga, ON L5N 8L9, Canada.
Indoor navigation is becoming increasingly essential for multiple applications. It is complex and challenging due to dynamic scenes, limited space, and, more importantly, the unavailability of global navigation satellite system (GNSS) signals. Recently, new sensors have emerged, namely event cameras, which show great potential for indoor navigation due to their high dynamic range and low latency.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Key Laboratory of Opto-Electronic Information Processing, Chinese Academy of Sciences, Shenyang 110016, China.
Cross-view geo-localization (CVGL) aims to determine the capture location of street-view images by matching them with corresponding 2D maps, such as satellite imagery. While recent bird's eye view (BEV)-based methods have advanced this task by addressing viewpoint and appearance differences, the existing approaches typically rely solely on either OpenStreetMap (OSM) data or satellite imagery, limiting localization robustness due to single-modality constraints. This paper presents a novel CVGL method that fuses OSM data with satellite imagery, leveraging their complementary strengths to enhance localization robustness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!