AI Article Synopsis

  • An archaeological dig in Prostějov, Czech Republic, uncovered a potter's workshop containing various color powders likely used for faience and surface decoration.
  • A detailed analysis using advanced techniques like SEM EDX, ICP MS, and Raman spectroscopy was conducted to investigate the chemical makeup of these powders.
  • Results indicated that the pink powder contained iron and the blue powder contained Prussian blue, along with organic materials such as plant resin, beeswax, and fats, suggesting these mixtures were used similarly to oil paints.

Article Abstract

An archaeological excavation in Prostějov (Czech Republic) revealed a workshop of a local potter with colourless, pink, and blue powders presumably used to produce faience/surface decoration. A comprehensive analytical study, which combined elemental and molecular analysis techniques, was performed to shed light on the chemical composition of these unique findings. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM EDX), inductively coupled-plasma mass spectrometry (ICP MS), flow injection analysis (FIA) with electrospray ionisation mass spectrometry (ESI MS), laser desorption ionisation mass spectrometry (LDI MS), and Raman spectroscopy were applied to reveal the elemental composition of the powders and identify the colouring agents in the pink and blue powders. The colouring agents in the pink powder were probably iron and the agent in the blue powder is Prussian blue. On top of that, it was also possible to determine the organic additives in these powders through pyrolysis gas chromatography with mass spectrometric detection (Py GC/MS), atmospheric solids analysis probe ion mobility mass spectrometry (ASAP IM MS), and LDI MS. The organic constituents were identified as plant resin, beeswax, and fats. These results point to the preparation of faience/pigment mixtures as oil paint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415618PMC
http://dx.doi.org/10.3390/molecules27165205DOI Listing

Publication Analysis

Top Keywords

mass spectrometry
16
pink blue
8
blue powders
8
ionisation mass
8
colouring agents
8
agents pink
8
mass
5
secret recipe
4
recipe revealed
4
revealed chemical
4

Similar Publications

Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification regulates the transcription of SLC7A11 through KDM6B and GATA3 to modulate ferroptosis.

J Biomed Sci

January 2025

Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.

Background: Recent studies indicate that N6-methyladenosine (mA) RNA modification may regulate ferroptosis in cancer cells, while its molecular mechanisms require further investigation.

Methods: Liquid Chromatography-Tandem Mass Spectrometry (HPLC/MS/MS) was used to detect changes in mA levels in cells. Transmission electron microscopy and flow cytometry were used to detect mitochondrial reactive oxygen species (ROS).

View Article and Find Full Text PDF

Sputum Microbiota Correlates With Metabolome and Clinical Outcomes in Asthma-Bronchiectasis Overlap.

Arch Bronconeumol

January 2025

Department of Allergy and Clinical Immunology, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou National Laboratory, Guangzhou, Guangdong, China. Electronic address:

Objectives: To investigate the microbiota and metabolome of patients with ABO compared with bronchiectasis and asthma, and determine the relevance with clinical characteristics, inflammatory endotype and exacerbation risks.

Methods: In this prospective cohort study, patients underwent comprehensive assessments, including sputum differential cell count, and sputum collection at baseline. Sputum microbiota was profiled via 16S rRNA gene sequencing and metabolome via liquid chromatography/mass spectrometry.

View Article and Find Full Text PDF

Enhanced nano-LC-MS for analyzing dansylated oral cancer tissue metabolome dissolved in solvents with high elution strength.

Anal Chim Acta

February 2025

Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:

Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.

View Article and Find Full Text PDF

Biarsenical-based fluorescent labeling of metallothioneins as a method for ultrasensitive quantification of poly-Cys targets.

Anal Chim Acta

February 2025

Department of Chemical Biology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383, Wrocław, Poland. Electronic address:

Background: Mammalian metallothioneins (MTs) play a crucial role in maintaining Zn(II) and Cu(I) homeostasis, as well as regulating the cellular redox potential. They are involved in cancer resistance to cisplatin-related drugs and the sequestration of toxic metal ions. To investigate their participation in specific physiological and pathological processes, it is imperative to develop an analytical method for measuring changes in protein concentration both in vitro and in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!