Chirality is undoubtedly a fundamental property of nature since the different interactions of optically active molecules in a chiral environment are essential for numerous applications. Thus, in the field of asymmetric synthesis, the search for efficient, sustainable, cost-effective and recyclable chiral catalysts is still the main challenge in organic chemistry. The field of carbon dots (CDs) has experienced tremendous development in the last 15 years, including their applications as achiral catalysts. Thus, understanding the implications of chirality in CDs chemistry could be of utmost importance to achieving sustainable and biocompatible chiral nanocatalysts. An efficient and cost-effective electrochemical synthetic methodology for the synthesis of L-Proline-based chiral carbon dots (CCDs) and EtOH-derived L-Proline-based chiral carbon dots (CCDs) is herein reported. The electrochemical set-up and reaction conditions have been thoroughly optimised and their effects on CCDs size, photoluminescence, as well as catalytic activity have been investigated. The obtained CCDs have been successfully employed to catalyze an asymmetric aldol reaction, showing excellent results in terms of yield, diastereo- and enantioselectivity. Moreover, the sustainable nature of the CCDs was demonstrated by recycling the catalysts for up to 3 cycles without any loss of reactivity or stereoselectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414281PMC
http://dx.doi.org/10.3390/molecules27165150DOI Listing

Publication Analysis

Top Keywords

carbon dots
16
chiral carbon
12
aldol reaction
8
l-proline-based chiral
8
dots ccds
8
chiral
6
ccds
5
electrochemical bottom-up
4
bottom-up synthesis
4
synthesis chiral
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!