Efficient removal of cumene from gaseous streams and recovery of its derivatives was accomplished using a MCM-41-supported sulfuric acid (SSA/MCM-41) adsorbent. The results indicated that the removal performance of the SSA/MCM-41 for cumene was significantly influenced by the process conditions such as bed temperature, inlet concentration, bed height, and flow rate. The dose-response model could perfectly describe the collected breakthrough adsorption data. The SSA/MCM-41 adsorbent exhibited a reactive temperature region of 120-170 °C, in which the cumene removal ratios () were greater than 97%. Rising the bed height or reducing the flow rate enhanced the theoretical adsorption performance metrics, such as theoretical breakthrough time () and theoretical breakthrough adsorption capacity (), whereas increasing the inlet concentration resulted in shortening and rising. As demonstrated in this paper, the highest and were 69.60 min and 324.50 mg g, respectively. Meanwhile, the spent SSA/MCM-41 could be desorbed and regenerated for cyclic reuse. Moreover, two recoverable adsorbed products, 4-isopropylbenzenesulfonic acid and 4, 4'-sulfonyl bis(isopropyl-benzene), were successfully separated and identified using FTIR and H/C NMR characterization. Accordingly, the relevance of a reactive adsorption mechanism was confirmed. This study suggests that the SSA/MCM-41 has remarkable potential for application as an adsorbent for the resource treatment of cumene pollutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416091 | PMC |
http://dx.doi.org/10.3390/molecules27165129 | DOI Listing |
Phys Chem Chem Phys
January 2025
Department of Electrical Engineering and Electronics, The University of Liverpool, Brownlow Hill, L69 3GJ, UK.
This work quantifies, through use of molecular dynamics (MD) simulations, the kinetic rates of physical surface processes occurring at a plasma-water interface. The probabilities of adsorption, absorption, desorption and scattering were computed for O, NO, NO, NO, OH, HO, HNO, HNO, and NO as they interact with the interface at three water temperatures: 298 K, 323 K, and 348 K. Species are categorised into the short-residence group (O, NO, NO, and NO) and the long-residence group (OH, HO, HNO, HNO, and NO) based on their mean surface residence time.
View Article and Find Full Text PDFZhonghua Gan Zang Bing Za Zhi
December 2024
Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu61004, China.
To retrospectively analyze the dual plasma molecular adsorption system (DPMAS) treatment technology and the laboratory data before and after treatment in patients with liver failure and refractory hyperbilirubinemia, so as to provide a clinical basis for the prediction and prevention of common related complications. A retrospective study was conducted on 161 cases with liver failure and 68 cases with refractory hyperbilirubinemia who underwent DPMAS treatment in our department from October 2022 to July 2024. The general clinical data characteristics, DPMAS treatment status, DPMAS-related complications, and changes in important laboratory indicators before and after the initial DPMAS treatment in both patient groups were analyzed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Petroleum and Chemical Engineering, Razi University, Kermanshah, Iran. Electronic address:
Cellulase is extensively used in the biorefinery of cellulosic materials to fermentable sugars in bioethanol production. Application of cellulase in the free form has disadvantages in enzyme wastage and low stability. The results of the present work showed these drawbacks can be solved by cellulase immobilization on functionalized FeO magnetic nanoparticles (MNPs) with reactive red 120 (RR120) as the affinity ligands.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:
This study presents the preparation, characterization, and application of a novel Multi-walled carbon nanotubes/TiO/chitosan (MWCNT/TiO/CS) nanocomposite, prepared using a hydrothermal method, for the removal of malachite green (MG) dye from aqueous solutions. Adsorption studies revealed optimal dye removal within 15 min of adsorption equilibrium time, with maximum removal efficiency of 98.53 % at pH 7.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China. Electronic address:
Electrocatalytic NO reduction (NORR) to NH represents a promising approach for converting hazardous NO waste gases into high-value NH products under ambient conditions. However, exploring stable, low-cost, and highly efficient catalysts to enhance the NO-to-NH conversion process remains a significant challenge. Herein, through systematic computational studies based on density functional theory (DFT), we rationally designed transition metal triatomic cluster supported on graphdiyne (TM/GDY) as potential single-cluster catalysts for high-performance NORR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!