With the development of fabrication technology for terahertz rectangular cavity devices, the fabrication process of integral terahertz waveguide cavities has received much attention because of its beneficial effect on improving the transmission of terahertz signals. However, smaller feature sizes, higher dimensional accuracy, and more stringent requirements for cavity surface roughness and edge radius make it difficult to manufacture terahertz waveguide cavities with a high operating frequency by using existing micro-manufacturing technology. At the same time, the smaller feature size also makes it more difficult to realize uniform metallization on the inner surface of a terahertz waveguide cavity. In this paper, a new and improved combined manufacturing process based on wire electrochemical micromachining and electrochemical deposition is proposed to realize the integral fabrication and uniform metallization of the inner surface of a high-frequency terahertz metal rectangular waveguide cavity. A detailed description and analysis of this combined process are carried out, together with corresponding experimental investigations. An integral 1.7 THz hollow-core metal rectangular waveguide cavity with an end-face size of 165.9 μm × 88.3 μm, an edge radius of less than 10 μm, an internal bottom surface roughness of less than 0.10 μm, and an internal side surface roughness of less than 0.40 μm was manufactured, and high-quality metallization of its inner surface was also achieved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412866PMC
http://dx.doi.org/10.3390/mi13081346DOI Listing

Publication Analysis

Top Keywords

inner surface
16
waveguide cavity
16
metal rectangular
12
rectangular waveguide
12
terahertz waveguide
12
surface roughness
12
metallization inner
12
integral fabrication
8
high-frequency terahertz
8
hollow-core metal
8

Similar Publications

Keyhole limpet haemocyanins (KLH1 and KLH2) from , are multi-subunit oxygen-carrying metalloproteins of approximately 3900 amino acids, that are widely used as carrier proteins in conjugate vaccines and in immunotherapy. KLHs and their derived conjugate vaccines are poorly characterized by LC-MS/MS due to their very stable supramolecular structures with megadalton molecular mass, and their resistance to efficient digestion with standard protocols. KLH1 and KLH2 proteins were conjugated to the conserved P0 peptide (pP0), derived from the P0 acidic ribosomal protein of sp.

View Article and Find Full Text PDF

Surface Modification of Polyvinylidene Fluoride Latex Nanoparticles through Chain Entanglement by Poly(meth)acrylate Monomer Swelling Seeded Emulsion Polymerization.

Langmuir

January 2025

School of Chemistry and Chemical Engineering, State Key Laboratory of Polyolefins and Catalysis, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China.

Polyvinylidene fluoride (PVDF) latex nanoparticles serve as a versatile platform for surface modification due to their role as precursors in PVDF manufacturing. However, the strong chemical stability and poor compatibility of PVDF present significant challenges for effective surface modification. To address this, we developed a method that facilitates surface modification through chain entanglement.

View Article and Find Full Text PDF

Oxygen, light, and mechanical force mediated radical polymerization toward precision polymer synthesis.

Chem Commun (Camb)

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

The synthesis of polymers with well-defined composition, architecture, and functionality has long been a focal area of research in the field of polymer chemistry. The advancement of controlled radical polymerization (CRP) has facilitated the synthesis of precise polymers, which are endowed with new properties and functionalities, thereby exhibiting a wide range of applications. However, radical polymerization faces several challenges, such as oxygen intolerance, and common thermal initiation methods may lead to side reactions and depolymerization.

View Article and Find Full Text PDF

Lead Adsorption and Desorption at the Barite (001) Surface in the Presence of EDTA.

ACS ES T Water

January 2025

School of Earth and Environmental Sciences, Queens College, City University of New York, Queens, New York 11367, United States.

Scaling minerals, such as barite, can cause detrimental consequences for oil/gas pipelines and water systems, but their formation can be inhibited by organic chelators such as ethylenediaminetetraacetic acid (EDTA). Here, we resolve how EDTA affects sorption and desorption of Pb at the barite (001) surface using a combination of X-ray scattering and microscopy measurements. In the presence of EDTA, Pb incorporated in the topmost part of the barite surface and adsorbed as inner-sphere complexes on the surface.

View Article and Find Full Text PDF

Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!