Low-G Triggered Acceleration Switch for Near-Zero Power Wake-Up Application.

Micromachines (Basel)

State Key Laboratory of Precision Measurement Technology and Instruments, Beijing 100084, China.

Published: August 2022

A low-g triggered micro-electromechanical system (MEMS) resonant acceleration switch is designed, fabricated and tested in this paper for near-zero power wake-up applications. The switch is actuated by ambient low-g vibration, consuming zero power while waiting for vibration at its resonant frequency. A cantilever beam and proof mass structure is adopted in the switch. The patterns of spiral cantilever beams are designed for low resonant frequency and threshold. Once the vibration with resonant frequency exceeds the acceleration threshold of the switch, the movable electrode becomes sufficiently displaced to contact the fixed electrodes and causes them to trigger. The dynamic responses of the switch are tested on a piezoelectric stack. The experimental results show that the switch closes under vibration at a frequency as low as 39.3 Hz and at an acceleration threshold of 0.074 g. A wake-up sensor node connected to the switch can awaken when the switch is under vibration as an intended characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414606PMC
http://dx.doi.org/10.3390/mi13081333DOI Listing

Publication Analysis

Top Keywords

resonant frequency
12
switch
9
low-g triggered
8
acceleration switch
8
near-zero power
8
power wake-up
8
vibration resonant
8
acceleration threshold
8
vibration
5
acceleration
4

Similar Publications

The safety and reliability of rotating machinery hinge significantly on the proper functioning of rolling bearings. In the last few years, there have been significant advances in the algorithms for intelligent fault diagnosis of bearings. However, the vibration signals collected by machines are inevitably affected by irrelevant noise because of the complex working environments of bearings.

View Article and Find Full Text PDF

Magnetic Resonance Imaging of Gastric Motility in Conscious Rats.

Neurogastroenterol Motil

December 2024

Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.

Introduction: Gastrointestinal (GI) magnetic resonance imaging (MRI) enables simultaneous assessment of gastric peristalsis, emptying, and intestinal filling and transit. However, GI MRI in animals typically requires anesthesia, which complicates physiology and confounds interpretation and translation to humans. This study aimed to establish GI MRI in conscious rats, and for the first time, characterize GI motor functions in awake versus anesthetized conditions.

View Article and Find Full Text PDF

Hyperspectral Metachip-Based 3D Spatial Map for Cancer Cell Screening and Quantification.

Adv Mater

December 2024

Advanced Microscopy and Instrumentation Research Center, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China.

In this paper, compact terahertz (THz) metachips for hyperspectral screening and quantitative evaluation of human cancer cells is reported. This pixelated resonant metachips feature the resonance channel from 1 and 3 THz frequency with a record-high quality factor (up to 230). Through the interactions of various cancer cells of different concentrations, high-dimensional spectral signatures are obtained, which are further transformed into a spatial map for labelling and quantification purposes.

View Article and Find Full Text PDF

Traditional beat frequency quartz-enhanced photoacoustic spectroscopy (BF-QEPAS) are limited by short energy accumulation times and the necessity of a decay period, leading to weaker signals and longer measurement cycles. Herein, we present a novel optomechanical energy-enhanced (OEE-) BF-QEPAS technique for fast and sensitive gas sensing. Our approach employs periodic pulse-width modulation (PWM) of the laser signal with an optimized duty cycle, maintaining the quartz tuning fork's (QTF) output at a stable steady-state level by applying stimulus signals at each half-period and allowing free vibration in alternate half-periods to minimize energy dissipation.

View Article and Find Full Text PDF

Sex-differences in the risk of carpal tunnel syndrome: results from a large Ontario, Canada worker cohort.

BMC Musculoskelet Disord

December 2024

Occupational Cancer Research Centre, Ontario Health, 525 University Avenue, 5th floor, Toronto, Ontario, M5G 2L3, Canada.

Background: Carpal tunnel syndrome (CTS) is a prevalent cumulative strain injury associated with occupational risk factors such as vibration, repetitive and forceful wrist movements, and awkward wrist postures. This study aimed to identify Ontario workers at elevated risk for CTS and to explore sex differences in CTS risk among workers.

Methods: The Occupational Disease Surveillance System (ODSS) links accepted lost time compensation claims to health administrative databases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!