A Wideband High-Gain Microstrip Array Antenna Integrated with Frequency-Selective Surface for Sub-6 GHz 5G Applications.

Micromachines (Basel)

Microwave Research Group (MRG), Centre for Telecommunication Research & Innovation (CeTRI), Fakulti Kejuruteraan Elektronik dan Kejuruteraan Komputer (FKEKK), Universiti Teknikal Malaysia Melaka (UTeM), Hang Tuah Jaya, Durian Tunggal 76100, Malaysia.

Published: July 2022

AI Article Synopsis

Article Abstract

This paper presents a wideband and high-gain rectangular microstrip array antenna with a new frequency-selective surface (FSS) designed as a reflector for the sub-6 5G applications. The proposed antenna is designed to meet the US Federal Communications Commission (FCC) standard for 5G in the mid-band (3.5-5 GHz) applications. The designed antenna configuration consists of 1 × 4 rectangular microstrip array antenna with an FSS reflector to produce a semi-stable high radiation gain. The modeled FSS delivered a wide stopband transmission coefficient from 3.3 to 5.6 GHz and promised a linearly declining phase over the mid-band frequencies. An equivalent circuit (EC) model is additionally performed to verify the transmission coefficient of the proposed FSS structure for wideband signal propagation. A low-cost FR-4 substrate material was used to fabricate the antenna prototype. The proposed wideband array antenna with an FSS reflector attained a bandwidth of 2.3 GHz within the operating frequency range of 3.5-5.8 GHz, with a fractional bandwidth of 51.12%. A high gain of 12.4 dBi was obtained at 4.1 GHz with an improvement of 4.4 dBi compared to the antenna alone. The gain variation was only 1.0 dBi during the entire mid-band. The total dimension of the fabricated antenna prototype is 10.32 λ × 4.25 λ ×1.295 λ at a resonance frequency of 4.5 GHz. These results make the presented antenna appropriate for 5G sub-6 GHz applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416536PMC
http://dx.doi.org/10.3390/mi13081215DOI Listing

Publication Analysis

Top Keywords

array antenna
16
microstrip array
12
ghz applications
12
antenna
10
wideband high-gain
8
frequency-selective surface
8
ghz
8
sub-6 ghz
8
rectangular microstrip
8
antenna fss
8

Similar Publications

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline homologues based on N-CDs‒Eu complex.

Mikrochim Acta

January 2025

Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.

A sensitized dual-response ratiometric fluorescent sensor integrated smartphone platform for accurate discrimination and detection of tetracycline (TC) homologues was fabricated based on N-CDs-Eu complex. In the sensing system, N-CDs act as a sensitizer of Eu and significantly enhance the fluorescence of TC-Eu complex approximate 40-fold owing to the synergistic effect of antenna effect (AE) and fluorescence resonance energy transfer (FRET). A paper sensor integrated with a smartphone platform is further fabricated for on-site measurement of TC.

View Article and Find Full Text PDF

In this paper, a multilayer monopulse antenna at Ku-Band with high efficiency, high power handling capability, high gain, 45° linear polarization and low sidelobe is presented. A new slot antenna is proposed as a radiating element based on a cavity-backed slot-coupled patch antenna. Using an enclosed cavity structure reduces coupling between antenna elements, thus increasing the antenna efficiency.

View Article and Find Full Text PDF

Parameter study of a 5G array antenna at 28 GHz.

Sci Rep

January 2025

Department of Electrical Engineering, Bushehr Branch, Islamic Azad University, Bushehr, Iran.

In this paper a 5G compact antenna is investigated at 28 GHz. The structure is based on Quasi-Yagi antenna comprising a director, driver, and reflector. The SIW technology is utilized to feed the antenna because of its numerous benefits.

View Article and Find Full Text PDF

First English article of Yagi-Uda antenna.

Proc Jpn Acad Ser B Phys Biol Sci

January 2025

School of Engineering, Tohoku University, Sendai, Miyagi, Japan.

Herein, the first English article demonstrating the Yagi-Uda antenna is introduced. The article was originally published in the Proceedings of the Imperial Academy of Japan in 1926.

View Article and Find Full Text PDF

Ultra-light antennas via charge programmed deposition additive manufacturing.

Nat Commun

January 2025

Advanced Manufacturing and Metamaterials Laboratory, Department of Material Science and Engineering, University of California, Berkeley, CA, USA.

The demand for lightweight antennas in 5 G/6 G communication, wearables, and aerospace applications is rapidly growing. However, standard manufacturing techniques are limited in structural complexity and easy integration of multiple material classes. Here we introduce charge programmed multi-material additive manufacturing platform, offering unparalleled flexibility in antenna design and the capability for rapid printing of intricate antenna structures that are unprecedented or necessitate a series of fabrication routes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!