A Winter-to-Summer Transition of Bacterial and Archaeal Communities in Arctic Sea Ice.

Microorganisms

Department of Biological Science, University of Bergen, Thormøhlensgate 53 A/B, 5020 Bergen, Norway.

Published: August 2022

The Arctic is warming 2-3 times faster than the global average, leading to a decrease in Arctic sea ice extent, thickness, and associated changes in sea ice structure. These changes impact sea ice habitat properties and the ice-associated ecosystems. Sea-ice algal blooms provide various algal-derived carbon sources for the bacterial and archaeal communities within the sea ice. Here, we detail the transition of these communities from winter through spring to early summer during the Norwegian young sea ICE (N-ICE2015) expedition. The winter community was dominated by the archaeon Nitrosopumilus and bacteria belonging to the (, and ), indicating that nitrogen-based metabolisms, particularly ammonia oxidation to nitrite by Nitrosopumilus was prevalent. At the onset of the vernal sea-ice algae bloom, the community shifted to the dominance of () and (), while Nitrosopumilus almost disappeared. The bioinformatically predicted carbohydrate-active enzymes increased during spring and summer, indicating that sea-ice algae-derived carbon sources are a strong driver of bacterial and archaeal community succession in Arctic sea ice during the change of seasons. This implies a succession from a nitrogen metabolism-based winter community to an algal-derived carbon metabolism-based spring/ summer community.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414599PMC
http://dx.doi.org/10.3390/microorganisms10081618DOI Listing

Publication Analysis

Top Keywords

sea ice
28
bacterial archaeal
12
arctic sea
12
archaeal communities
8
algal-derived carbon
8
carbon sources
8
winter community
8
sea
7
ice
7
community
5

Similar Publications

Climate-driven changes in high-elevation forest distribution and reductions in snow and ice cover have major implications for ecosystems and global water security. In the Greater Yellowstone Ecosystem of the Rocky Mountains (United States), recent melting of a high-elevation (3,091 m asl) ice patch exposed a mature stand of whitebark pine () trees, located ~180 m in elevation above modern treeline, that date to the mid-Holocene (c. 5,950 to 5,440 cal y BP).

View Article and Find Full Text PDF

Accurately modeling the deformation of temperate glacier ice, which is at its pressure-melting temperature and contains liquid water at grain boundaries, is essential for predicting ice sheet discharge to the ocean and associated sea-level rise. Central to such modeling is Glen's flow law, in which strain rate depends on stress raised to a power of = 3 to 4. In sharp contrast to this nonlinearity, we found by conducting large-scale, shear-deformation experiments that temperate ice is linear-viscous ( 1.

View Article and Find Full Text PDF

Bathymetry critically influences the intrusion of warm Circumpolar Deep Water onto the continental shelf and under ice shelf cavities in Antarctica, thereby forcing ice melting, grounding line retreat, and sea level rise. We present a novel and comprehensive bathymetry of Antarctica that includes all ice shelf cavities and previously unmeasured continental shelf areas. The new bathymetry is based on a 3D inversion of a circumpolar compilation of gravity anomalies constrained by measurements from the International Bathymetric Chart of the Southern Ocean, BedMachine Antarctica, and discrete seafloor measurements from seismic and ocean robotic probes.

View Article and Find Full Text PDF

Cyanobacteria in winter: Seasonal dynamics of harmful algal blooms and their driving factors in boreal lakes.

Heliyon

December 2024

Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts, Université du Québec en Abitibi-Témiscamingue, 341 Rue Principale N, Amos, QC, J9T 2L8, Canada.

Lake cyanobacteria can overgrow and form blooms, often releasing life-threatening toxins. Harmful algal blooms (HABs) are typically caused by excess nutrients and high temperatures, but recent observations of cyanobacteria beneath the ice in boreal lakes suggest that the dynamics are more complex. This study investigates the seasonal dynamics of HABs in boreal lakes and identifies their driving factors.

View Article and Find Full Text PDF

21 century surface UV radiation changes deduced from CMIP6 models: part I-evolution of major influencing factors.

Photochem Photobiol Sci

January 2025

Institute of Meteorology and Climate Research Atmospheric Trace Gases and Remote Sensing, Karlsruhe Institute of Technology, Karlsruhe, Germany.

For a given solar elevation, the levels of solar ultraviolet radiation at the Earth's surface are determined by the amounts of ozone, aerosols, and clouds, as well as by the reflectivity of the surface. Here, we study the evolution of these factors for three selected decades in the period 1950-2100 using results from simulations with Earth-System models (ESMs) participating in the 6 phase of the Coupled Model Intercomparison Project (CMIP6). The simulations for the future are based on three Shared Socioeconomic Pathways: SSP1-2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!