Diet has been suggested to be an important driver of variation in microbiota composition in mammals. However, whether this is a more general phenomenon and how fast changes in gut microbiota occur with changes in diet remains poorly understood. Forty-nine years ago, ten lizards of the species were taken from the island of Pod Kopište and introduced onto the island of Pod Mrčaru (Croatia). The introduced population underwent a significant dietary shift, and their descendants became omnivorous (consuming up to 80% plant material during summer). Variation in their gut microbiota has never been investigated. To elucidate the possible impact on the gut microbiota of this rapid change in diet, we compared the microbiota (V4 region of the 16S rRNA gene) of from Pod Mrčaru, Pod Kopište, and the mainland. In addition, we explored other drivers of variation in gut microbiota including insularity, the population of origin, and the year of sampling. Alpha-diversity analyses showed that the microbial diversity of omnivorous lizards was higher than the microbial diversity of insectivorous lizards. Moreover, omnivorous individuals harbored significantly more The gut microbial diversity of insectivorous lizards was nonetheless more heterogeneous. Insectivorous lizards on the mainland had different gut microbial communities than their counterparts on the island of Pod Kopište. and were more abundant in the gut microbiota from insular lizards compared to mainland lizards. Finally, we showed that the population of origin was also an important driver of the composition of the gut microbiota. The dietary shift that occurred in the introduced population of has had a detectable impact on the gut microbiota, but other factors such as insularity and the population of origin also contributed to differences in the gut microbial composition of these lizards, illustrating the multifactorial nature of the drivers of variation in gut microbiota. Overall, our data show that changes in gut microbiota may take place on ecological timescales. Yet, diet is only one of many factors driving variation in gut microbiota across populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9413874 | PMC |
http://dx.doi.org/10.3390/microorganisms10081550 | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Inn Med (Heidelb)
January 2025
Medizinische Klinik 2, Ludwig-Maximilians-Universität München, Marchioninistraße 15, 83477, München, Deutschland.
Background: In patients with inflammatory bowel diseases (IBD), functional complaints frequently persist after the clearing of inflammation and are clinically difficult to distinguish from symptoms of inflammation. In recent years, the influence of bidirectional communication between the gut and brain on gut physiology, emotions, and behavior has been demonstrated.
Research Questions: What mechanisms underlie the development of functional gastrointestinal complaints in patients with irritable bowel syndrome (IBS) and IBD? What therapeutic approaches arise from this?
Materials And Methods: Narrative review.
NPJ Regen Med
January 2025
Institute of Biomedical Sciences, Academia Sinica, Taipei, 115, Taiwan.
Gut microbiota affect transplantation outcomes; however, the influence of immunosuppression and cell therapy on the gut microbiota in cardiovascular care remains unexplored. We investigated gut microbiota dynamics in a nonhuman primate (NHP) cardiac ischemia/reperfusion model while under immunosuppression and receiving cell therapy with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (EC) and cardiomyocytes (CM). Both immunosuppression and EC/CM co-treatment increased gut microbiota alpha diversity.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Wellesley College, Wellesley, MA, USA.
Characterizing the dynamics of microbial community succession in the infant gut microbiome is crucial for understanding child health and development, but no normative model currently exists. Here, we estimate child age using gut microbial taxonomic relative abundances from metagenomes, with high temporal resolution (±3 months) for the first 1.5 years of life.
View Article and Find Full Text PDFNat Commun
January 2025
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark Kgs., Lyngby, Denmark.
The gut microbiome significantly impacts human health, yet cultivation challenges hinder its exploration. Here, we combine deep whole-metagenome sequencing with culturomics to selectively enrich for taxa and functional capabilities of interest. Using a modified commercial base medium, 50 growth modifications were evaluated, spanning antibiotics, physico-chemical conditions, and bioactive compounds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!