Color as an Indicator of Properties in Thermally Modified Scots Pine Sapwood.

Materials (Basel)

Department of Woodworking Machines and Fundamentals of Machine Design, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, Wojska Polskiego 38/42, 60-637 Poznań, Poland.

Published: August 2022

The aim of this study was to determine the dependencies between mechanical properties of modified wood and its color. Within its scope, quantitative changes in color and chemical composition (mass loss, total carbon content, content of extractives and main components of wood), as well as mechanical properties (compressive strength along the grain, strength and modulus of elasticity in longitudinal tension tests, compression across the grain and impact resistance) of the modified Scots pine sapwood, were determined. Modifications were conducted in the atmosphere of superheated steam (time-4 h, temperature of 130, 160, 190, 220 °C). Thermal modification of wood results in an increase in the modulus of elasticity, a reduction of elasticity, longitudinal tensile strength and compressive strength perpendicular to grain. It was found that color parameters ∆E, ∆L and ∆a are linear functions of the modification temperature. The existence of functional dependencies between mass loss, longitudinal tensile strength, radial modulus of elasticity and parameters of ∆E and ∆L makes it possible to determine these properties of modified wood based on color. In turn, chemical analysis indicated that an increase in the temperature of wood modification caused a decrease of holocellulose and hemicelluloses contents, especially in wood samples modified at 220 °C.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9416439PMC
http://dx.doi.org/10.3390/ma15165776DOI Listing

Publication Analysis

Top Keywords

modulus elasticity
12
modified scots
8
scots pine
8
pine sapwood
8
mechanical properties
8
properties modified
8
modified wood
8
mass loss
8
compressive strength
8
elasticity longitudinal
8

Similar Publications

Elasticity Characteristics of Thenar Muscles in Carpal Tunnel Syndrome.

Ultrasound Med Biol

January 2025

Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA. Electronic address:

Objective: Measurement of thenar muscle elasticity by ultrasound shear wave elastography (SWE) may be useful for the diagnosis and evaluation of carpal tunnel syndrome (CTS), but there is a paucity of information on SWE of the thenar muscles in patients with CTS. The purpose of this study was to investigate the elasticity of the thenar muscles in patients with CTS.

Methods: Twenty-two adult patients with a referral diagnosis of CTS (27 hands) and 20 healthy volunteers as a control (20 dominant hands) participated in this study.

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Regulation of swelling behaviour while preserving bulk modulus in hydrogels surface grafting.

Soft Matter

January 2025

Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.

This study presents a novel approach to control "linked property changes" in hydrogels. Specifically, we controlled the swelling behaviour without altering the bulk elastic modulus by grafting polymers selectively into the surface region of the gels, while varying the graft amount.

View Article and Find Full Text PDF

The impact of animal-based food production on climate change drives the development of plant-based alternatives. We demonstrate the use of colloidal thermogelation on a real nanoemulsion system to create structured gels that could be of interest for thermo-mechanical processing of next-generation plant-based food applications. We use a commercial pea protein isolate (PPI) without further purification to stabilize a 20 vol% peanut oil-in-water nanoemulsion at pH = 7 by high-pressure homogenization (HPH) and demonstrate the temperature induced gelation behavior of the nanoemulsion as a function of the HPH processing parameters.

View Article and Find Full Text PDF

Design of Double Strains in Triboelectric Nanogenerators toward Improving Human Behavior Monitoring.

Langmuir

January 2025

Anhui Key Laboratory of Sewage Purification and Eco-restoration Materials, School of Biology, Food and Environment, Hefei University, Hefei City 230601 China.

Triboelectric nanogenerators (TENGs) offer a convenient means to convert mechanical energy from human movement into electricity, exhibiting the application prospects in human behavior monitoring. Nevertheless, the present methods to improve the device monitoring effect are limited to the design of a triboelectric material level (control of electron gain and loss ability). As compared with reported work, we improve the monitoring effect of TENG-based tactile sensors by optimizing the structure of the electrode/triboelectric material interface by means of a multiple strains mechanism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!