The article presents the results of three-point bending tests carried out for samples cut from full-size fibre-cement boards subjected to typical and exceptional conditions. The tests were carried out with the simultaneous acquisition of acoustic emission signals. It has been noted that some factors significantly deteriorate the strength parameters of the samples as well as cause the occurrence of differences in the number of acoustic emission signals of various classes and their energy parameters. A statistical analysis was carried out in order to repeat the relationship between the strength parameters of the samples and the acoustic emission parameters. Based on the research, it was found that the bending strength for specimens exposed to fire and high temperature is more than 50% lower than for air-dried specimens and specimens exposed to water. The increased number of freeze-thaw cycles also has an impact on the strength of the specimens. Components exposed to more than 10 freeze-thaw cycles had a strength more than 30% smaller than the reference specimens soaked in water and exposed to bath-drying cycles. A similar dependency was indicated by the number of signals of the individual classes, their energy parameters and their frequencies. The number, strength, duration and frequency also decreased along with the increase in the test case number. On this basis, conclusions were drawn concerning the suitability of acoustic emission for the evaluation of the strength of fibre-cement elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412995 | PMC |
http://dx.doi.org/10.3390/ma15165757 | DOI Listing |
Sensors (Basel)
January 2025
Department of Industrial Engineering and Mathematical Sciences, Polytechnic University of Marche, 60131 Ancona, Italy.
The acoustic analysis of a moving object, such as in pass-by or fly-over tests, is a very important and demanding issue. These types of analyses make it possible to characterize the machine in quite realistic conditions, but the typical difficulties related to source localization and characterization are usually exacerbated by the need to take into consideration and to compensate for the object movement. In this paper, a technique based on acoustic beamforming is proposed, which is applicable to all those cases where the object under investigation is moving.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Microlab, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CD Delft, The Netherlands.
Structural fatigue can lead to catastrophic failures in various engineering applications and must be properly monitored and effectively managed. This paper provides a state-of-the-art review of recent developments in structural fatigue monitoring using piezoelectric-based sensors. Compared to alternative sensing technologies, piezoelectric sensors offer distinct advantages, including compact size, lightweight design, low cost, flexible formats, and high sensitivity to dynamic loads.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Research and Testing Institute Pilsen, 30100 Plzen, Czech Republic.
In this study, we investigated the effect of spray angle on the microstructure, bonding quality, and scratch resistance of cold-sprayed SS316L coatings on SS304 substrates. The coatings were deposited at spray angles of 45°, 60°, 75°, and 90° using a high-pressure cold spray system. A comprehensive analysis of the relationship between the spray angle and coating properties was conducted, with a particular focus on fracture toughness and porosity.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Laboratory for Testing and Materials, Department of Mechanics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou Campus, 157 73 Athens, Greece.
The fracture process of heterogeneous materials is studied here in the framework of the discipline of Non-Extensive Statistical Mechanics. Acoustic emission data provided by an experimental protocol with concrete specimens, plain or fiber-reinforced, under bending are taken advantage of. This innovation of the study lies in the fact that the analysis of the acoustic activity is implemented in terms of the energy content of the acoustic signals rather than of their interevent time or their interevent distance.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!