Silicone rubbers are a good choice for shielding materials because of having elastic and attenuating properties as well as cost-effectiveness. Thus, the aim of this study was to prepare ground-breaking silicone rubber samples by adding WO-nanoparticles and testing the performance of their radiation shielding ability against Cs-137, Co-60, and Am-241 gamma energy. Increasing the concentration of WO nanoparticles in silicone rubber (SR) led to decreasing the half-value layer (HVL) and mean free path (MFP) values determined for the samples tested. Furthermore, the values of MFP and HVL upsurged according to the enhancement of the photon energy. It is noteworthy that the prepared silicone rubber (SR) systems with 50 and 60 wt% concentrations of WO-nanoparticles displayed lower HVL than the BiO-containing silicone rubber (SR) systems. In the same way, studied silicone rubber SR-W60 represented the lowest HVL comprising iron ore containing silicone rubber.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414134PMC
http://dx.doi.org/10.3390/ma15165706DOI Listing

Publication Analysis

Top Keywords

silicone rubber
28
silicone
8
rubber systems
8
rubber
7
impact wo-nanoparticles
4
wo-nanoparticles silicone
4
rubber radiation
4
radiation protection
4
protection efficiency
4
efficiency silicone
4

Similar Publications

The increasing demand for soft robotic systems in agricultural, biomedical and other applications has driven the development of actuators that can mimic the flexibility and adaptability of human muscles. Several studies have explored the design and implementation of soft actuators for robotic applications, however, there is a need for soft actuators demonstrating delicate gripping capabilities but also excel in specific biomedical applications, such as therapeutic massaging. The objective of this work is to develop a multi-finger soft pneumatic actuator mimicking human fingers for Ayurvedic therapeutic massaging and gripping applications.

View Article and Find Full Text PDF

Muscle Fiber-Inspired High-Performance Strain Sensors for Motion Recognition and Control.

Langmuir

January 2025

Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.

The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).

View Article and Find Full Text PDF

Evaluating Cost-effectiveness and Mixing Efficacy for Elastomeric and Temporary Restorative Material Using Two Mixing Tips: A SEM-EDS Analysis.

J Contemp Dent Pract

September 2024

Department of Prosthodontics and Crown & Bridge, Bharati Vidyapeeth Deemed to be University, Dental College and Hospital, Pune, Maharashtra, India, ORCID: https://orcid.org/0009-0008-7338-1699.

Aim: This study aimed to compare the mixing efficacy and cost-effectiveness of new T-mixer tips against the standard double helical tips for a light-body elastomeric impression and a temporary/interim restorative material using a scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy.

Methodology: Automixed samples ( = 16) were divided into four groups of four samples each: Samples that were mixed with Helical tip for elastomer, T-mixer tip for elastomer, Helical tip for interim restorative material, and T-mixer tip for interim restorative material. These samples were then evaluated for SEM analysis.

View Article and Find Full Text PDF

Background: Operative delivery is a technique used during vaginal or cesarean birth to facilitate the patient's labor course through the assistance of a vacuum extractor. This method is increasingly used compared with forceps. This study aimed to investigate the forced effects of vacuum extractors comprising vacuum cups with different thicknesses on the fetal head and the vacuum extractor during vacuum-assisted delivery and to determine the optimal thickness for reducing the failure rate and minimizing neonatal and maternal morbidity.

View Article and Find Full Text PDF

Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!