A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

First-Principles Study on the Effect of Lithiation in Spinel LiMnO (0 ≤ x ≤ 1) Structure: Calibration of CASTEP and ONETEP Simulation Codes. | LitMetric

Lithium-manganese-oxide (Li-Mn-O) spinel is among the promising and economically viable, high-energy density cathode materials for enhancing the performance of lithium-ion batteries. However, its commercialization is hindered by its poor cyclic performance. In computational modelling, pivotal in-depth understanding of material behaviour and properties is sizably propelled by advancements in computational methods. Hence, the current work compares traditional DFT (CASTEP) and linear-scaling DFT (ONETEP) in a LiMnO electronic property study to pave way for large-scale DFT calculations in a quest to improve its electrochemical properties. The metallic behaviour of LiMnO (0.25 ≤ x ≤ 1) and LiMnO was correctly determined by both CASTEP and ONETEP code in line with experiments. Furthermore, OCV during the discharge cycle deduced by both codes is in good accordance and is between 5 V and 2.5 V in the composition range of 0 ≤ x ≤ 1. Moreover, the scaling of the ONETEP code was performed at South Africa's CHPC to provide guidelines on more productive large-scale ONETEP runs. Substantial total computing time can be saved by systematically adding the number of processors with the growing structure size. The study also substantiates that true linear scaling of the ONETEP code is achieved by a systematic truncation of the density kernel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414491PMC
http://dx.doi.org/10.3390/ma15165678DOI Listing

Publication Analysis

Top Keywords

≤ ≤
12
onetep code
12
castep onetep
8
scaling onetep
8
6
onetep
6
first-principles study
4
study lithiation
4
lithiation spinel
4
limno
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!