Economic development and population growth lead to the increased production of chicken manure, which is a problematic organic waste in terms of its amount, environmental threats, and moisture content. In this study, hydrothermal carbonization, an emerging way of waste disposal, was performed on chicken manure to produce an energy-rich material called hydrochar. The effects of hydrothermal carbonization temperature (180, 240, 300 °C) and process time (30, 90, 180 min) were summarized. Proximate and ultimate analysis, as well as low and high heating values were applied both on raw material and derived hydrochars. Additionally, the performance of the process was examined. The obtained results show that hydrothermal carbonization is a feasible method for chicken manure disposal and valorization. Although the process time did not influence the fuel properties of chicken manure considerably, a higher temperature led to a significantly higher heating value, reaching 23,880.67 ± 34.56 J × g at 300 °C and 180 min with an improvement of ~8329 J × g compared with raw chicken manure (15,551.67 J × g). Considering the energy gain value, the hydrochar derived at 240 °C in 30 min had the best result. Moreover, the energy consumption for this process was relatively low (124.34 ± 8.29 kJ × g). With its still feasible fuel properties and high heating value of 20,267.00 ± 617.83 kJ × g, it was concluded that these parameters of chicken manure hydrochar are the most beneficial and present a potential alternative for conventional fuel.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9415030PMC
http://dx.doi.org/10.3390/ma15165564DOI Listing

Publication Analysis

Top Keywords

chicken manure
28
hydrothermal carbonization
16
fuel properties
12
study hydrothermal
8
properties chicken
8
manure hydrochar
8
300 °c
8
process time
8
180 min
8
high heating
8

Similar Publications

Total-solids-controlled microbial response and volatile fatty acids production in sludge and chicken manure co-fermentation.

J Environ Manage

January 2025

Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China.

With the aim of exploring the association between microbial response and volatile fatty acids (VFAs) production in sludge and chicken manure co-fermentation with total solids (TS) controlled, four fermentation experimental groups (TS = 20, 40, 60, and 80 g/L) were established in this study. The results demonstrated that the yield of VFAs reached the peak (530.08 mg COD/g VSS) at the 40 g-TS group.

View Article and Find Full Text PDF

Anaerobic digestion (AD) technology offers significant advantages in addressing environmental issues arising from the intensification of livestock production since it enables waste reduction and energy recovery. However, the molecular composition of dissolved organic matter (DOM) and its linkages to microbial biodiversity during the industrial-scale AD process of chicken manure (CM) remains unclear. In this study, the chemical structure of CM digestate-derived DOM was characterized by using multi-spectroscopic techniques and ultrahigh-resolution mass spectrometry, and the microbial composition was detected by using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Optimized hydrothermal carbonization of chicken manure and anaerobic digestion of its process water for better energy management.

J Environ Manage

January 2025

Thermochemical Conversion of Biomass Research Group, Department of Green Chemistry & Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium.

Modern poultry production is faced with the challenge of properly managing its associated wastes, in particular chicken manure (CM). There is a need to improve the management of CM through conversion processes that allow the production of value-added products, particularly for energy purposes, such as hydrothermal carbonization (HTC) and anaerobic digestion (AD). The objectives of this study were: i) to optimize the CM-HTC, using response surface methodology with simultaneous optimization of mass yield and higher heating value (HHV), and ii) to evaluate the biomethane potential of the process water generated from hydrochar production under the optimized condition.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) data from agroecosystems in low- and middle-income countries is limited. We surveyed chicken (n = 52) and pig (n = 47) farms in Kenya to understand AMR in animal-environment pathways. Using LC-MS/MS, we validated the methods for analyzing eight common antibiotics and quantified the associated risks.

View Article and Find Full Text PDF

Enhancing indigenous plant growth in metal(loid) contaminated soil using biochar.

Chemosphere

January 2025

Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea. Electronic address:

Soil around mines contaminated with metal(loid) is not suitable for growing plants and it is necessary to select indigenous plants with tolerance for metal(loid) and ameliorate metal toxicity in soil using soil amendments. Therefore, the purpose of this study was to improve the soil environment to make it suitable for plant growth by treating chicken manure derived-biochar in soil contaminated with arsenic (As), cadmium (Cd), and lead (Pb). Biochar application increased soil pH and significantly reduced bioavailable As, Cd and Pb, thereby lowering toxicity in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!