This study aims to explore the effect of deformation parameters on microstructure evolution during the new two-stage annealing method composed of an aging treatment (AT) and a cooling recrystallization annealing treatment (CRT). Firstly, the hot compressive tests with diverse deformation parameters were finished for an initial aged deformed GH4169 superalloy. Then, the same two-stage annealing method was designed and carried out for the deformed samples. The results show that the deformation parameters mainly affect the grain microstructure during CRT by influencing the content, distribution and morphology of the δ phase after deformation. The reason for this is that there is an equilibrium of the content of the δ phase and Nb atom. When the deformation temperature is high, the complete dissolution behavior of the δ phase nuclei promotes the dispersion distribution of the δ phase with rodlike and needle-like shapes during AT. Thus, the fine and heterogeneous microstructure is obtained after annealing because the recrystallization nucleation is enhanced in those dispersed δ phases during CRT. However, when the retained content of δ phase nuclei is high after deformation, the clusters of intragranular δ phases will form during AT, resulting in the pinning of the motion for dislocation. The elimination of the mixed grain microstructure is slowed down due to the low static recrystallization (SRX) nucleation rate within the deformed grain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410400PMC
http://dx.doi.org/10.3390/ma15165508DOI Listing

Publication Analysis

Top Keywords

deformation parameters
16
two-stage annealing
12
initial aged
8
gh4169 superalloy
8
evolution two-stage
8
annealing method
8
grain microstructure
8
content phase
8
phase nuclei
8
deformation
7

Similar Publications

Electrically Switchable Multi-Stable Topological States Enabled by Surface-Induced Frustration in Nematic Liquid Crystal Cells.

Adv Mater

January 2025

Liquid Crystals and Photonics Group, Department of Electronics and Information Systems, Ghent University, Technologiepark-Zwijnaarde 126, Ghent, 9052, Belgium.

In liquid crystal (LC) cells, the surface patterning directs the self-assembly of the uniaxial building blocks in the bulk, enabling the design of stimuli-response optical devices with various functionalities. The combination of different anchoring patterns at both substrates can lead to surface induced frustration, preventing a purely planar and defect-free configuration. In cells with crossed assembly of rotating anchoring patterns, elastic deformations allow to obtain a defect-free bulk configuration, but an electrical stimulus can induce disclination lines.

View Article and Find Full Text PDF

: A common problem in pediatric orthopedics is leg length discrepancy (LLD). In adulthood, this may result in overload and degenerative changes in the lumbar spine, hip, and knee joints of the longer limb, and the fixed equinus position of the foot of the shorter limb. Surgical treatment using temporary epiphysiodesis with eight-plate implants is a minimally invasive, safe, and patient-tolerated procedure in LLD.

View Article and Find Full Text PDF

Evaluation of Plasma microRNA-222 as a Biomarker for Gastric Cancer.

J Clin Med

December 2024

Department of Surgery, Toho University Sakura Medical Center, 564-1 Shimoshizu, Sakura 285-8741, Chiba, Japan.

The dysregulation of microRNAs (miRNAs) has been detected in patients with gastric cancer (GC), which inspired the use of miRNAs as a novel biomarker for GC. In this study, we investigated the previously reported miRNA dysfunction in cancer tissues as a potential plasma biomarker for GC using quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The published miRNA abnormalities were searched in the microRNA Cancer Association Database.

View Article and Find Full Text PDF

Hypertensive response to exercise (HRE) is an established risk factor for cardiovascular events. HRE is prevalent among people with excess adiposity. Both obesity and HRE have been individually associated with adverse cardiac remodeling.

View Article and Find Full Text PDF

Bridge expansion joints are critical components that accommodate the movement of a bridge caused by temperature fluctuations, concrete shrinkage, and vehicular loads. Analyzing the spatiotemporal deformation of these expansion joints is essential for monitoring bridge safety. This study investigates the deformation characteristics of Hongtang Bridge in Fuzhou, China, using synthetic aperture radar interferometry (InSAR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!