Due to an increase in prevalence of cervical lesions, it is important to use appropriate restorative materials to reduce the incidence of secondary lesions. Owing to having antibacterial properties, cervical composite restorations containing different ratios of Zinc Oxide nanoparticles (ZnO NPs) have been analyzed using the Finite Element method to determine the optimal incorporation ratio from mechanical and thermal perspectives. A numerical simulation is conducted for a mandibular first premolar with a cervical lesion (1.5 × 2 × 3 mm) restored with composites containing 0 to 5% wt. ZnO NPs. Subsequently, the samples are exposed to different thermo-mechanical boundary conditions, and stress distributions at different margins are examined. The accumulated stress in the restoration part increases for the 1% wt. sample, whereas the higher percentage of ZnO NPs leads to the reduction of stress values. In terms of different loading conditions, the least and most stress values in the restoration part are observed in central loading and lingually oblique force, respectively. The change in the surface temperature is inversely correlated with the ratio of ZnO NPs. In conclusion, the composite containing 5% wt. ZnO NPs showed the most proper thermo-mechanical behavior among all samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9412397PMC
http://dx.doi.org/10.3390/ma15165504DOI Listing

Publication Analysis

Top Keywords

zno nps
20
mechanical thermal
8
composite restorations
8
restorations ratios
8
ratios zinc
8
zinc oxide
8
oxide nanoparticles
8
finite element
8
conditions stress
8
stress values
8

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Biosynthesis and activity of Zn-MnO nanocomposite in vitro with molecular docking studies against multidrug resistance bacteria and inflammatory activators.

Sci Rep

January 2025

Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.

This study investigated the green synthesis of Zn-MnO nanocomposites via the fungus Penicillium rubens. Herein, the synthesized Zn-MnO nanocomposites were confirmed by UV-spectrophotometry with a top peak (370 nm). Transmission electron microscopy confirmed irregular particles with a spherical-like shape ranging from 25.

View Article and Find Full Text PDF

The interaction of protein with nanoparticles (NPs) of varying shape and/or size boosts our understanding on their bioreactivity and establishes a comprehensive database for use in medicine, diagnosis, and therapeutic applications. The present study explores the interaction between lysozyme (LYZ) and different NPs like graphene oxide (GO) and zinc oxide (ZnO) having various shapes (spherical, 's', and rod-shaped, 'r') and sizes, focusing on their binding dynamics and subsequent effects on both the protein fibrillation and antimicrobial properties. Typically, GO is considered a promising medium due to its apparent inhibition and prolonged lag phase for LYZ fibrillation.

View Article and Find Full Text PDF

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!