Effects of Drought Stress on Peramine and Lolitrem B in -Endophyte-Infected Perennial Ryegrass.

Life (Basel)

State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.

Published: August 2022

Perennial ryegrass (Lolium perenne) infected by Epichloë endophytes contains alkaloids that are responsible for toxicosis in many countries. Drought may greatly affect the alkaloids contents of symbionts. The E+ perennial ryegrass was grown in pots with different soil moisture conditions (15%, 30%, 45% and 60% relative saturation moisture content, RSMC) for four months in a greenhouse of Lanzhou University, and then, the aboveground tissues were collected. The levels of peramine and lolitrem B in all plant samples were determined. The results showed that the drought stress significantly (p < 0.05) increased the peramine concentrations of perennial ryegrass but did not affect the lolitrem B concentrations. In addition, the drought stress significantly (p < 0.05) reduced the plant height and dry matter of perennial ryegrass. In conclusion, drought stress affects the peramine concentration in the perennial ryegrass−endophyte symbiont but may not affect the lolitrem B concentration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410104PMC
http://dx.doi.org/10.3390/life12081207DOI Listing

Publication Analysis

Top Keywords

perennial ryegrass
20
drought stress
16
stress peramine
8
peramine lolitrem
8
stress 005
8
affect lolitrem
8
perennial
6
ryegrass
5
effects drought
4
stress
4

Similar Publications

Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions.

View Article and Find Full Text PDF

Early root traits, particularly total root length, are heritable and show positive genetic correlations with biomass yield in perennial ryegrass; incorporating them into breeding programs can enhance genetic gain. Perennial ryegrass (Lolium perenne L.) is an important forage grass widely used in pastures and lawns, valued for its high nutritive value and environmental benefits.

View Article and Find Full Text PDF

Elevated atmospheric CO2 (e[CO2]) often enhances plant photosynthesis and improves water status. However, the effects of e[CO2] vary significantly and are believed to be influenced by water availability. With the future warmer climate expected to increase the frequency and severity of extreme rainfall, the response of plants to e[CO2] under changing precipitation patterns remains uncertain.

View Article and Find Full Text PDF

Effects of Concentrate Feed Starch Source Offered Twice a Day on Feed Intake and Milk Production of Cows During the Early Postpartum Period.

Animals (Basel)

December 2024

Agriculture Victoria Research, Department of Energy, Environment and Climate Action, Ellinbank, Victoria 3821, Australia.

This experiment determined the effects of two different starch sources when offered twice a day to cows during the early postpartum period (1 to 23 d postpartum, treatment period) on dry matter intake (DMI), feeding behavior, and milk production. The subsequent effects on milk production in the carryover period (24 to 72 d) where cows received a common diet (grazed perennial ryegrass pasture plus concentrate supplements) were also measured. Thirty-two multiparous dairy cows were offered concentrate feed (8 kg DM/d) containing 5 kg DM of crushed wheat grain or ground corn grain (7 h in vitro starch digestibility of 65.

View Article and Find Full Text PDF

Integrated metabolomic and transcriptomic analysis reveals the role of root phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass.

BMC Plant Biol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Center for Grassland Microbiome, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, P.R. China.

Article Synopsis
  • Perennial ryegrass exhibits varying levels of salt tolerance, with genotype P1 identified as salt-sensitive and genotype P2 as salt-tolerant when exposed to 200 mM NaCl.
  • Through transcriptomics and metabolomics analyses, researchers found 5,728 differentially expressed genes (DEGs) in response to salt stress, highlighting key genes and pathways that contribute to salt tolerance, such as antioxidant enzyme genes and metabolic pathways related to secondary metabolite biosynthesis.
  • The study underscores the prominence of the phenylpropanoid biosynthesis pathway in the salt tolerance of perennial ryegrass, particularly in genotype P2, which showed higher levels of beneficial compounds like flavonoids and anthocyanins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!