We apply the non-Markov-type analysis of state-to-state transitions to nearly microsecond molecular dynamics (MD) simulation data at a folding temperature of a small artificial protein, chignolin, and we found that the time scales obtained are consistent with our previous result using the weighted ensemble simulations, which is a general path-sampling method to extract the kinetic properties of molecules. Previously, we also applied diffusion map (DM) analysis, which is one of a manifold of learning techniques, to the same trajectory of chignolin in order to cluster the conformational states and found that DM and relaxation mode analysis give similar results for the eigenvectors. In this paper, we divide the same trajectory into shorter pieces and further apply DM to such short-length trajectories to investigate how the obtained eigenvectors are useful to characterize the conformational change of chignolin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410030 | PMC |
http://dx.doi.org/10.3390/life12081188 | DOI Listing |
Life (Basel)
August 2022
Department of Physics, School of Science and Technology, Meiji University, 1-1-1 Higashi-Mita, Tama-ku, Kawasaki 214-8571, Japan.
We apply the non-Markov-type analysis of state-to-state transitions to nearly microsecond molecular dynamics (MD) simulation data at a folding temperature of a small artificial protein, chignolin, and we found that the time scales obtained are consistent with our previous result using the weighted ensemble simulations, which is a general path-sampling method to extract the kinetic properties of molecules. Previously, we also applied diffusion map (DM) analysis, which is one of a manifold of learning techniques, to the same trajectory of chignolin in order to cluster the conformational states and found that DM and relaxation mode analysis give similar results for the eigenvectors. In this paper, we divide the same trajectory into shorter pieces and further apply DM to such short-length trajectories to investigate how the obtained eigenvectors are useful to characterize the conformational change of chignolin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!