The current minireview aims to assess the implications of epicardial fat secretory function in the development of coronary artery disease. The epicardial adipose tissue (EAT) is a visceral fat depot that has been described as a cardiovascular risk factor. In addition to its mechanical protection role and physiological secretory function, it seems that various secretion products of the epicardial fat are responsible for metabolic disturbances at the level of the cardiac muscle when in association with pre-existing pathological conditions, such as metabolic syndrome. There is a pathological reduction in sarcomere shortening, abnormal cytosolic Ca fluxes, reduced expression of sarcoplasmic endoplasmic reticulum ATPase 2a and decreased insulin-mediated Akt-Ser473-phosphorylation in association with abnormal levels of epicardial fat tissue. Activin A, angiopoietin-2, and CD14-positive monocytes selectively accumulate in the diseased myocardium, resulting in reduced cardiomyocyte contractile function. At the same time, it is believed that these alterations in secretory products directly decrease the myocyte function via molecular changes, thus contributing to the development of coronary disease when certain comorbidities are associated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9410442PMC
http://dx.doi.org/10.3390/jcm11164718DOI Listing

Publication Analysis

Top Keywords

epicardial fat
16
implications epicardial
8
secretory function
8
development coronary
8
epicardial
5
fat
5
role implications
4
fat coronary
4
coronary atherosclerotic
4
atherosclerotic disease
4

Similar Publications

Epicardial Adipose Tissue from Computed Tomography: a Missing Link in Premature Coronary Artery Disease?

Eur Heart J Cardiovasc Imaging

January 2025

Sorbonne Université, unité d'imagerie cardiovasculaire et thoracique, Hôpital La Pitié Salpêtrière (AP-HP), Laboratoire d'Imagerie Biomédicale, INSERM, CNRS, Institute of Cardiometabolism and Nutrition, ACTION Group, Paris, France.

Purpose: Epicardial adipose tissue (EAT) could contribute to the specific atherosclerosis profile observed in premature coronary artery disease (pCAD) characterized by accelerated plaque burden (calcified and non-calcified), high risk plaque features (HRP) and ischemic recurrence. Our aims were to describe EAT volume and density in pCAD compared to asymptomatic individuals matched on CV risk factors and to study their relationship with coronary plaque severity extension and vulnerability.

Materials And Methods: 208 patients who underwent coronary computed tomography angiography (CCTA) were analyzed.

View Article and Find Full Text PDF

FoxP3 T-regulatory (Treg) lymphocytes and cytokine production by cells from the stromal vascular fraction (SVF) of epicardial (EAT) and thymus (TAT) adipose tissue of 42 patients with chronic coronary heart disease (CHD) were studied. In the SVF of TAT in patients with Gensini Score (GS)≥74 (the most severe atherosclerosis), the production of IL-1β, TNF, IL-4, and IFNγ was higher, while FoxP3 translocation into the nucleus was lower than in patients with GS<74. The GS index directly correlated with the production of IL-4, IL-1β, and TNF by cells of the SVF of TAT, and inversely - with the production of TNF, IL-17, and IL-10 by cells of the SVF of EAT.

View Article and Find Full Text PDF

Purpose: Hemorrhagic transformation (HT) is a severe complication in patients with acute ischemic stroke (AIS) undergoing intravenous thrombolysis therapy (IVT). Epicardial adipose tissue (EAT) contributes to the development of AIS and the disruption of the blood-brain barrier. This study aims to investigate the relationship between EAT and the risk of HT, as well as functional outcomes, in AIS patients treated with IVT.

View Article and Find Full Text PDF
Article Synopsis
  • Epicardial adipose tissue (EAT) is linked to atrial fibrillation (AF) and atrial fibrosis, but many AF patients show no signs of left atrial (LA) fibrosis. This study compared EAT levels in AF patients without LA fibrosis to matched controls without AF.
  • AF patients without LA fibrosis had significantly higher total and regional volumes of EAT compared to controls, indicating that EAT may play a role in AF development even when LA fibrosis is absent.
  • The study found no differences in EAT volumes between AF patients with and without LA fibrosis and no significant link between EAT volume and AF recurrence after catheter ablation.
View Article and Find Full Text PDF

Predictive value of epicardial adipose tissue volume for early detection of left ventricular dysfunction in patients suspected of coronary artery disease.

Clin Radiol

November 2024

Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Rd., Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China. Electronic address:

Aim: To investigate the relationship between epicardial adipose tissue (EAT) and myocardial strain and the severity of coronary artery disease (CAD), and to evaluate the predictive value of EAT parameters in early left ventricular (LV) diastolic dysfunction.

Materials And Methods: One hundred seventy patients with suspected CAD who underwent both coronary computed tomography angiography and echocardiography were enrolled in 2020. LV global strains were calculated using commercial software.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!