Crystalline metal-organic frameworks (MOFs) are extensively used in areas such as gas storage and small-molecule drug delivery. Although Cu-BTC (, MOF-199, BTC: benzene-1,3,5-tricarboxylate) has versatile applications, its NO storage and release characteristics are not amenable to therapeutic usage. In this work, micro-sized Cu-BTC was prepared solvothermally and then processed by ball-milling to prepare nano-sized Cu-BTC (). The NO storage and release properties of the micro- and nano-sized Cu-BTC MOFs were morphology dependent. Control of the hydration degree and morphology of the NO delivery vehicle improved the NO release characteristics significantly. In particular, the nano-sized NO-loaded Cu-BTC (NO⊂nano-Cu-BTC, ) released NO at 1.81 µmol·mg in 1.2 h in PBS, which meets the requirements for clinical usage. The solid-state structural formula of NO⊂Cu-BTC was successfully determined to be [CuCHO]·(NO) through single-crystal X-ray diffraction, suggesting no structural changes in Cu-BTC upon the intercalation of 0.167 equivalents of NO within the pores of Cu-BTC after NO loading. The structure of Cu-BTC was also stably maintained after NO release. NO⊂Cu-BTC exhibited significant antibacterial activity against six bacterial strains, including Gram-negative and positive bacteria. NO⊂Cu-BTC could be utilized as a hybrid NO donor to explore the synergistic effects of the known antibacterial properties of Cu-BTC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409197PMC
http://dx.doi.org/10.3390/ijms23169098DOI Listing

Publication Analysis

Top Keywords

storage release
12
cu-btc
10
release characteristics
8
nano-sized cu-btc
8
release
5
controllable nitric
4
nitric oxide
4
storage
4
oxide storage
4
release cu-btc
4

Similar Publications

β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.

View Article and Find Full Text PDF

Trends in blood transfusion and causes of blood wastage: a retrospective analysis in a teaching hospital.

BMC Health Serv Res

January 2025

Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, 666 Buzih Road, Taichung, 40601, Taiwan.

Background: Blood is a vital medical resource that is sourced from primarily nonremunerated donations. As Taiwan faces an aging population, increasing medical demands pose new challenges to blood resource management. Trend analysis can improve blood supply chain management and allocate blood resources more efficiently and cost-effectively.

View Article and Find Full Text PDF

Coacervate vesicles assembled by liquid-liquid phase separation improve delivery of biopharmaceuticals.

Nat Chem

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.

View Article and Find Full Text PDF

The fermentation process in alcoholic beverage production converts sugars into ethanol and CO, releasing significant amounts of greenhouse gases. Here, Cupriavidus necator DSM 545 was grown autotrophically using gas derived from alcoholic fermentation, using a fed-batch bottle system. Nutrient starvation was applied to induce intracellular accumulation of poly(3-hydroxybutyrate) (PHB), a bioplastic polymer, for bioconversion of CO-rich waste gas into PHB.

View Article and Find Full Text PDF

Antimicrobial resistance poses a growing threat to public health globally. Multidrug resistant Pseudomonas (P.) aeruginosa is detected in many infected wounds and is very challenging to treat with antibiotics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!