Pathology and Pathogenesis of Brain Lesions Produced by Type D Epsilon Toxin.

Int J Mol Sci

California Animal Health and Food Safety Laboratory, School of Veterinary Medicine, University of California Davis, San Bernardino, CA 92408, USA.

Published: August 2022

type D epsilon toxin (ETX) produces severe, and frequently fatal, neurologic disease in ruminant livestock. The disorder is of worldwide distribution and, although vaccination has reduced its prevalence, ETX still causes substantial economic loss in livestock enterprises. The toxin is produced in the intestine as a relatively inactive prototoxin, which is subsequently fully enzymatically activated to ETX. When changed conditions in the intestinal milieu, particularly starch overload, favor rapid proliferation of this clostridial bacterium, large amounts of ETX can be elaborated. When sufficient toxin is absorbed from the intestine into the systemic circulation and reaches the brain, two neurologic syndromes can develop from this enterotoxemia. If the brain is exposed to large amounts of ETX, the lesions are fundamentally vasculocentric. The neurotoxin binds to microvascular endothelial receptors and other brain cells, the resulting damage causing increased vascular permeability and extravasation of plasma protein and abundant fluid into the brain parenchyma. While plasma protein, particularly albumin, pools largely perivascularly, the vasogenic edema becomes widely distributed in the brain, leading to a marked rise in intracranial pressure, coma, sometimes cerebellar herniation, and, eventually, often death. When smaller quantities of ETX are absorbed into the bloodstream, or livestock are partially immune, a more protracted clinical course ensues. The resulting brain injury is characterized by bilaterally symmetrical necrotic foci in certain selectively vulnerable neuroanatomic sites, termed focal symmetrical encephalomalacia. ETX has also been internationally listed as a potential bioterrorism agent. Although there are no confirmed human cases of ETX intoxication, the relatively wide species susceptibility to this toxin and its high toxicity mean it is likely that human populations would also be vulnerable to its neurotoxic actions. While the pathogenesis of ETX toxicity in the brain is incompletely understood, the putative mechanisms involved in neural lesion development are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9409160PMC
http://dx.doi.org/10.3390/ijms23169050DOI Listing

Publication Analysis

Top Keywords

etx
9
brain
8
type epsilon
8
epsilon toxin
8
large amounts
8
amounts etx
8
plasma protein
8
toxin
5
pathology pathogenesis
4
pathogenesis brain
4

Similar Publications

Epsilon toxin (ETX) is an exotoxin produced by Clostridium perfringens type D that induces enterotoxaemia or necrotic intestinal infection in small ruminants and bovine. Immunization is an essential element in preventing the spread of infectious diseases. In recent literature, nanocarriers have exhibited the capacity to deliver protection, stability, and regulated distribution properties to protein-based antigens.

View Article and Find Full Text PDF

Epsilon Toxin from Induces the Generation of Extracellular Vesicles in HeLa Cells Overexpressing Myelin and Lymphocyte Protein.

Toxins (Basel)

December 2024

Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences-Campus Bellvitge, University of Barcelona, 08907 Barcelona, Spain.

Epsilon toxin (ETX) from is a pore-forming toxin (PFT) that crosses the blood-brain barrier and binds to myelin structures. In in vitro assays, ETX causes oligodendrocyte impairment, subsequently leading to demyelination. In fact, ETX has been associated with triggering multiple sclerosis.

View Article and Find Full Text PDF

The treatment of stress-related disorders such as anxiety and depression is still challenging. One potential therapeutical option are neurosteroids. Their synthesis is promoted by ligands of the mitochondrial translocator protein 18 kDa (TSPO).

View Article and Find Full Text PDF

Intrauterine inflammation from chorioamnionitis (CA) is associated with placental dysfunction and increased risk of bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity. Antenatal steroid (ANS) treatment improves early respiratory outcomes for premature infants. However, it remains unclear whether ANS improve long-term respiratory outcomes, and whether these effects are mediated through improvement of placental dysfunction and/or direct impact on the fetal lung.

View Article and Find Full Text PDF

Gene editing without ex vivo culture evades genotoxicity in human hematopoietic stem cells.

Cell Stem Cell

December 2024

Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA. Electronic address:

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for β-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here, we compare combined CRISPR-Cas9 editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. Dual targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two single guide RNAs (sgRNAs) resulted in superior HbF induction, including in sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!