Trimethylamine-N-oxide (TMAO) is a uremic toxin, which has been associated with chronic kidney disease (CKD). Renal tubular epithelial cells play a central role in the pathophysiology of CKD. Megalin is an albumin-binding surface receptor on tubular epithelial cells, which is indispensable for urine protein reabsorption. To date, no studies have investigated the effect of TMAO on megalin expression and the functional properties of human tubular epithelial cells. The aim of this study was first to identify the functional effect of TMAO on human renal proximal tubular cells and second, to unravel the effects of TMAO on megalin-cubilin receptor expression. We found through global gene expression analysis that TMAO was associated with kidney disease. The microarray analysis also showed that megalin expression was suppressed by TMAO, which was also validated at the gene and protein level. High glucose and TMAO was shown to downregulate megalin expression and albumin uptake similarly. We also found that TMAO suppressed megalin expression via PI3K and ERK signaling. Furthermore, we showed that candesartan, dapagliflozin and enalaprilat counteracted the suppressive effect of TMAO on megalin expression. Our results may further help us unravel the role of TMAO in CKD development and to identify new therapeutic targets to counteract TMAOs effects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407713PMC
http://dx.doi.org/10.3390/ijms23168856DOI Listing

Publication Analysis

Top Keywords

megalin expression
24
tubular epithelial
12
epithelial cells
12
tmao
11
expression
8
expression albumin
8
albumin uptake
8
proximal tubular
8
tubular cells
8
pi3k erk
8

Similar Publications

Human parietal epithelial cells as Trojan horses in albumin overload.

Sci Rep

January 2025

Kidney Histomorphology and Molecular Biology Laboratory, Nephrology Unit, Department of Medicine - DIMED, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.

Parietal Epithelial Cells (PECs) activation and proliferation are common to several distinct forms of glomerulopathies. Due to several stimuli, PECs can change to a progenitor (CD24 and CD133/2) or a pro-sclerotic (CD44) phenotype. In addition, PECs, which are constantly exposed to filtered albumin, are known to be involved in albumin internalization, but how this mechanism occurs is unknown.

View Article and Find Full Text PDF

Vacuolar H-ATPase and Megalin-Mediated Prorenin Uptake: Focus on Elements Beyond the (Pro)Renin Receptor.

J Cell Physiol

January 2025

Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands.

Megalin is a multiple-ligand receptor that contributes to protein reabsorption in the kidney. Recently, megalin was found to act as a novel endocytic receptor for prorenin. Internalization depended on the (pro)renin receptor.

View Article and Find Full Text PDF

Microglia-Derived Vitamin D Binding Protein Mediates Synaptic Damage and Induces Depression by Binding to the Neuronal Receptor Megalin.

Adv Sci (Weinh)

December 2024

Department of Neurology in Affiliated Zhongda Hospital and Jiangsu Provincial Medical Key Discipline, School of Medicine, Institute of Neuropsychiatry, Key Laboratory of Developmental Genes and Human Disease in Ministry of Education, Southeast University, Nanjing, 210096, China.

Vitamin D binding protein (VDBP) is a potential biomarker of major depressive disorder (MDD). This study demonstrates for the first time that VDBP is highly expressed in core emotion-related brain regions of mice susceptible to chronic unpredictable mild stress (CUMS). Specifically, the overexpression of microglia (MG)-derived VDBP in the prelimbic leads to depression-like behavior and aggravates CUMS-induced depressive phenotypes in mice, whereas conditional knockout of MG-derived VDBP can reverse both neuronal damage and depression-like behaviors.

View Article and Find Full Text PDF

Colistin is essential for treating multidrug-resistant Gram-negative bacterial infections but has significant nephrotoxic side effects. Traditional approaches for studying colistin's nephrotoxicity are challenged by the rapid metabolism of its prodrug, colistin methanesulfonate and the difficulty of obtaining adequate plasma from critically ill patients. To address these challenges, we developed the Spheroid Nephrotoxicity Assessing Platform (SNAP), a microfluidic device that efficiently detects colistin-induced toxicity in renal proximal tubular epithelial cell (RPTEC) spheroids within 48 hours using just 200 μL of patient plasma.

View Article and Find Full Text PDF

Megalin: A Sidekick or Nemesis of the Kidney?

J Am Soc Nephrol

November 2024

Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas.

Megalin is an endocytic receptor in the proximal tubules that reabsorbs filtered proteins in the kidneys. Recycling of megalin after endocytosis and its expression on the apical plasma membrane of the proximal tubule are critical for its function. The expression of megalin in the kidney undergoes dynamic changes under physiologic and pathophysiologic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!