Early detriment in the muscle mass quantity, quality, and functionality, determined by calf circumference (CC), phase angle (PA), gait time (GT), and grip strength (GSt), may be considered a risk factor for sarcopenia. Patterns derived from these parameters could timely identify an early stage of this disease. Thus, the present work aims to identify those patterns of muscle-related parameters and their association with sarcopenia in a cohort of older Mexican women with neural network analysis. Methods: Information from the functional decline patterns at the end of life, related factors, and associated costs study was used. A self-organizing map was used to analyze the information. A SOM is an unsupervised machine learning technique that projects input variables on a low-dimensional hexagonal grid that can be effectively utilized to visualize and explore properties of the data allowing to cluster individuals with similar age, GT, GSt, CC, and PA. An unadjusted logistic regression model assessed the probability of having sarcopenia given a particular cluster. Results: 250 women were evaluated. Mean age was 68.54 ± 5.99, sarcopenia was present in 31 (12.4%). Clusters 1 and 2 had similar GT, GSt, and CC values. Moreover, in cluster 1, women were older with higher PA values (p < 0.001). From cluster 3 upward, there is a trend of worse scores for every variable. Moreover, 100% of the participants in cluster 6 have sarcopenia (p < 0.001). Women in clusters 4 and 5 were 19.29 and 90 respectively, times more likely to develop sarcopenia than those from cluster 2 (p < 0.01). Conclusions: The joint use of age, GSt, GT, CC, and PA is strongly associated with the probability women have of presenting sarcopenia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408641PMC
http://dx.doi.org/10.3390/ijerph191610239DOI Listing

Publication Analysis

Top Keywords

patterns muscle-related
8
sarcopenia
8
older mexican
8
mexican women
8
age gst
8
sarcopenia cluster
8
women
6
cluster
6
patterns
4
muscle-related risk
4

Similar Publications

Transcriptome analysis of muscle atrophy in Leizhou black goats: identification of key genes and insights into limb-girdle muscular dystrophy.

BMC Genomics

January 2025

Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524013, China.

Background: The Leizhou Black Goat (LZBG), a prominent breed in tropical China's meat goat industry, frequently exhibits inherent muscle atrophy and malnutrition-related traits. Particularly, muscles critical for support, such as the legs, often display severe symptoms. This study aimed to investigate the differential genes and signaling pathways influencing muscle development and atrophy across various muscle locations in LZBG from a muscular atrophy-affected family.

View Article and Find Full Text PDF

Skeletal muscle atrophy, resulting from an imbalance in muscle protein synthesis and degradation, compromises muscle quality and function, imposing significant burdens on movement and metabolic stability. Animal models are crucial for understanding the mechanisms of skeletal muscle atrophy and developing clinical prevention and treatment strategies. Zebrafish, as small aquatic vertebrates, exhibit high genetic homology with humans and offer advantages such as rapid reproduction, development, and transparent embryos.

View Article and Find Full Text PDF

Diquat Induces Cell Death and dopamine Neuron Loss via Reactive Oxygen Species Generation in .

Environ Sci Technol

January 2025

School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.

Diquat (DQ), a contact herbicide extensively utilized in both agricultural and nonagricultural domains, exhibits a high correlation with neuronal disorders. Nevertheless, the toxicity and underlying mechanisms associated with exposure to environmental concentrations of DQ remain ambiguous. Here, we report dose-dependent cellular neurotoxicity of DQ in .

View Article and Find Full Text PDF

Skeletal muscle adaptations and post-exertional malaise in long COVID.

Trends Endocrinol Metab

December 2024

Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Amsterdam Movement Sciences Research Institute, Amsterdam, The Netherlands. Electronic address:

When acute SARS-CoV-2 infections cause symptoms that persist longer than 3 months, this condition is termed long COVID. Symptoms experienced by patients often include myalgia, fatigue, brain fog, cognitive impairments, and post-exertional malaise (PEM), which is the worsening of symptoms following mental or physical exertion. There is little consensus on the pathophysiology of exercise-induced PEM and skeletal-muscle-related symptoms.

View Article and Find Full Text PDF
Article Synopsis
  • ALS is a serious neurodegenerative disease that leads to progressive motor decline and paralysis, with an increase in identified gene mutations highlighting the need for new models to better understand the disease mechanisms.* -
  • Researchers created a mouse model with the P497S mutation, which displayed motor symptoms similar to ALS, and by examining gene expression, they found motor neurons showed reduced survival and denervation of neuromuscular junctions at 12 months.* -
  • Interestingly, key muscle-related genes were found to be downregulated in motor neurons of affected mice, suggesting these neurons may play a critical role in supporting muscle maintenance despite commonly being associated with muscle tissue.*
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!