Soil pollution by heavy metals is a major concern in China and has received much attention in recent years. Aiming to investigate the status of heavy metal pollution and the safety of vegetables in the soil of wastewater-irrigated facilities, this study investigated the distribution and migration characteristics of heavy metals in vegetable−soil systems of facilities in a typical sewage irrigation area of the Xi River, Shenyang City, northern China. Health risks due to the fact of exposure to heavy metals in the vegetable soil of facilities and ingrown vegetables through different exposure pathways were evaluated. Spatial interpolation and a potential ecological risk assessment were applied to evaluate the soil quality. Bioaccumulation factors (BCFs) were used to analyze the absorption and transportation capacity of Cd, Cu, Pb, and Zn by different parts of different vegetables. The results showed that the average concentration of Cd exceeded the standard values by 1.82 times and accumulated by 11 times, suggesting that Cd poses the most severe pollution among the four metals in the soil of facilities in the Xi River sewage irrigation area. In the city, a significant accumulation of Cd in the soil was identified with different spatial distributions. Cd also contributed the most in terms of the estimated potential ecological risk index, while the impacts of the other three metals were relatively small. The concentrations of heavy metals were mostly lower than the limit set by the corresponding Chinese standards. Various BCFs were observed for the four metals in the order Cd > Zn > Cu > Pb. Vegetables also demonstrated different BCFs in the order of leaf vegetables > Rhizome vegetable > Solanaceae vegetable. The magnitude of the noncarcinogenic risk for all four heavy metals was less than one for all three exposure routes and did not cause significant noncarcinogenic health effects in humans. However, the carcinogenic risk of Cd from some vegetables via dietary intake was considered higher. Protection measures should be taken to implement better pollution control and land use planning.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407870PMC
http://dx.doi.org/10.3390/ijerph19169835DOI Listing

Publication Analysis

Top Keywords

heavy metals
20
heavy metal
8
metal pollution
8
risk assessment
8
systems facilities
8
northern china
8
metals
8
sewage irrigation
8
irrigation area
8
soil facilities
8

Similar Publications

Identifying and quantifying the dominant factors influencing heavy metal (HM) pollution sources are essential for maintaining soil ecological health and implementing effective pollution control measures. This study analyzed soil HM samples from 53 different land use types in Jiaozuo City, Henan Province, China. Pollution sources were identified using Absolute Principal Component Score (APCS), with 8 anthropogenic factors, 9 natural factors, and 4 soil physicochemical properties mapped using Geographic Information System (GIS) kernel density estimation.

View Article and Find Full Text PDF

Gold (or electrum) in hydrothermal fluid precipitates directly from gold sulfide complex and/or partly via suspended nanoparticles. The hydrothermal fluid contains "invisible gold" that is atomically dispersed in sulfide minerals or as nanoparticles with a size of less than 10 nm. However, the contribution of these gold nanoparticles to the formation of native gold and its alloy with silver (electrum) remains unclear.

View Article and Find Full Text PDF

Seizure detection via reservoir computing in MoS-based charge trap memory devices.

Sci Adv

January 2025

Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.

View Article and Find Full Text PDF

Anaerobic Adhesive Effect on the Counter-Torque of Zirconia Implant Abutment Screws: In Vitro Study.

Clin Implant Dent Relat Res

February 2025

Department of Restorative Dentistry, Faculty of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Introduction: Implantology has become a primary solution for tooth loss due to excellent osseointegration and high long-term success rates. However, complications such as abutment screw loosening, especially in implant-supported single crowns, compromise prosthesis longevity. Anaerobic adhesives (AAs) have shown promise in mechanical fields for preventing screw loosening, but their effectiveness in dental implants, particularly zirconia, remains uncertain.

View Article and Find Full Text PDF

Two versatile yet simple methods, colorimetric and spectrofluorimetric, were utilized for the quantitation of nonchromophore neomycin using silver nanoparticles modified with fluorescein. Fluorescein was excited at 485 nm (emission at 515 nm); when it is deposited on the surface of silver nanoparticles, its fluorescence intensity at 515 nm is quenched. Neomycin restores the fluorescence level at 515 nm by displacing fluorescein from nanoparticle binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!