In the present study, we estimated genetic diversity and population structure in 186 accessions of and species using 24 simple sequence repeat markers (SSR). Furthermore, an association analysis was performed for antioxidant activities, including guaiacol peroxidase (GPX), ascorbate peroxidase (APX), peroxidase (POX), catalase (CAT), and dry matter (DM) under two control and drought stress conditions. Our findings showed that drought treatment significantly decreased DM, whereas activities of all antioxidant enzymes were increased compared to the control conditions. The results of correlation analysis indicated that, under drought stress conditions, all biochemical traits had a positive and significant association with each other and with dry matter. In the molecular section, the results of the analysis of molecular variance (AMOVA) indicated that the molecular variation within species is more than within them. The dendrogram obtained by cluster analysis showed that grouping the investigated accessions was in accordance with their genomic constitutions. The results of association analysis revealed 8 and 9 significant marker-trait associations (MTA) under control and drought stress conditions, respectively. Among identified MTAs, two associations were simultaneously found in both growing conditions. Moreover, several SSR markers were associated with multiple traits across both conditions. In conclusion, our results could provide worthwhile information regarding marker-assisted selection for the activity of antioxidant enzymes in future breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408274 | PMC |
http://dx.doi.org/10.3390/genes13081491 | DOI Listing |
J R Soc Interface
January 2025
The Swiss Institute for Dryland Environmental and Energy Research, BIDR, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 8499000, Israel.
Plants often respond to drier climates by slow evolutionary adaptations from fast-growing to stress-tolerant species. These evolutionary adaptations increase the plants' resilience to droughts but involve productivity losses that bear on agriculture and food security. Plants also respond by spatial self-organization, through fast vegetation patterning involving differential plant mortality and increased water availability to the surviving plants.
View Article and Find Full Text PDFPlant Sci
January 2025
State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China. Electronic address:
Abiotic stresses adversely impact plants survival and growth, which in turn affect plants especially crop yields worldwide. To cope with these stresses, plant responses depend on the activation of molecular networks cascades, including stress perception, signal transduction, and the expression of specific stress-related genes. Plant bZIP (basic leucine zipper) transcription factors are important regulators that respond to diverse abiotic stresses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2025
Forest Biology Center, Institute of Environmental Biology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland.
Climate change is impacting forests in complex ways, with indirect effects arising from interactions between tree growth and reproduction often overlooked. Our 43-y study of European beech () showed that rising summer temperatures since 2005 have led to more frequent seed production events. This shift increases reproductive effort but depletes the trees' stored resources due to insufficient recovery periods between seed crops.
View Article and Find Full Text PDFJ Integr Plant Biol
January 2025
Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China.
Reactive oxygen species (ROS) plays critical roles in modulating plant growth and stress response and its homeostasis is fine tuned using multiple peroxidases. HO, a major kind of ROS, is removed rapidly and directly using three catalases, CAT1, CAT2, and CAT3, in Arabidopsis. Although the activity regulations of catalases have been well studied, their degradation pathway is less clear.
View Article and Find Full Text PDFPlanta
January 2025
Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa.
Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!