Structural Insights and Development of LRRK2 Inhibitors for Parkinson's Disease in the Last Decade.

Genes (Basel)

Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.

Published: August 2022

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease, characterized by the specific loss of dopaminergic neurons in the midbrain. The pathophysiology of PD is likely caused by a variety of environmental and hereditary factors. Many single-gene mutations have been linked to this disease, but a significant number of studies indicate that mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a potential therapeutic target for both sporadic and familial forms of PD. Consequently, the identification of potential LRRK2 inhibitors has been the focus of drug discovery. Various investigations have been conducted in academic and industrial organizations to investigate the mechanism of LRRK2 in PD and further develop its inhibitors. This review summarizes the role of LRRK2 in PD and its structural details, especially the kinase domain. Furthermore, we reviewed in vitro and in vivo findings of selected inhibitors reported to date against wild-type and mutant versions of the LRRK2 kinase domain as well as the current trends researchers are employing in the development of LRRK2 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9408223PMC
http://dx.doi.org/10.3390/genes13081426DOI Listing

Publication Analysis

Top Keywords

lrrk2 inhibitors
12
development lrrk2
8
parkinson's disease
8
kinase domain
8
lrrk2
7
inhibitors
5
structural insights
4
insights development
4
inhibitors parkinson's
4
disease
4

Similar Publications

Article Synopsis
  • This review focuses on genetic mutations in kinases related to Parkinson's Disease and analyzes both existing treatments and potential new therapeutic targets.
  • The study highlights four key kinases—PINK1, LRRK2, GAK, and PRKRA—emphasizing that LRRK2 has the most marketed inhibitors, while PINK1, GAK, and PRKRA remain largely unexplored.
  • It calls for increased research on these underinvestigated kinases to develop new therapies that could improve treatment options and address the progression of Parkinson's Disease.
View Article and Find Full Text PDF

Background: Extracellular vesicles are easily accessible in various biofluids and allow the assessment of disease-related changes in the proteome. This has made them a promising target for biomarker studies, especially in the field of neurodegeneration where access to diseased tissue is very limited. Genetic variants in the LRRK2 gene have been linked to both familial and sporadic forms of Parkinson's disease.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a common neurodegenerative disease affecting nearly 10 million people worldwide and placing a heavy medical burden on both society and families. However, due to the complexity of its pathological mechanisms, current treatments for PD can only alleviate patients' symptoms. Therefore, novel therapeutic strategies are urgently sought in clinical practice.

View Article and Find Full Text PDF

In-depth mass-spectrometry reveals phospho-RAB12 as a blood biomarker of G2019S LRRK2-driven Parkinson's disease.

Brain

December 2024

Lab of Parkinson's & Other Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Parkinson's Disease and Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona; Institut de Neurociències, Universitat de Barcelona; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) CB06/05/0018-ISCIII; ES 08036 Barcelona, Spain.

Leucine-rich repeat kinase 2 (LRRK2) inhibition is a promising disease-modifying therapy for LRRK2-associated Parkinson's disease (L2PD) and idiopathic PD (iPD). However, pharmaco-dynamic readouts and progression biomarkers for clinical trials aiming for disease modification are insufficient since no endogenous marker reflecting enhanced kinase activity of the most common LRRK2 G2019S mutation has been reported yet in L2PD patients. Employing phospho-/proteomic analyses we assessed the impact that LRRK2 activating mutations had in peripheral blood mononuclear cells (PBMCs) from a LRRK2 clinical cohort from Spain (n=174).

View Article and Find Full Text PDF

Rebalance of mitophagy by inhibiting LRRK2 improves colon alterations in an MPTP model.

iScience

October 2024

Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166 Messina, Italy.

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common genetic causes of Parkinson's disease (PD). Studies demonstrated that variants in LRRK2 genetically link intestinal disorders to PD. We aimed to evaluate whether the selective inhibitor of LRRK2, PF-06447475 (PF-475), attenuates the PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in central nervous system (CNS) and in the gastrointestinal system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!