We discuss how causal diagrams can be used by clinicians to make better individualized treatment decisions. Causal diagrams can distinguish between settings where clinical decisions can rely on a conventional additive regression model fit to data from a historical randomized clinical trial (RCT) to estimate treatment effects and settings where a different approach is needed. This may be because a new patient does not meet the RCT's entry criteria, or a treatment's effect is modified by biomarkers or other variables that act as mediators between treatment and outcome. In some settings, the problem can be addressed simply by including treatment-covariate interaction terms in the statistical regression model used to analyze the RCT dataset. However, if the RCT entry criteria exclude a new patient seen in the clinic, it may be necessary to combine the RCT data with external data from other RCTs, single-arm trials, or preclinical experiments evaluating biological treatment effects. For example, external data may show that treatment effects differ between histological subgroups not recorded in an RCT. A causal diagram may be used to decide whether external observational or experimental data should be obtained and combined with RCT data to compute statistical estimates for making individualized treatment decisions. We use adjuvant treatment of renal cell carcinoma as our motivating example to illustrate how to construct causal diagrams and apply them to guide clinical decisions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406391PMC
http://dx.doi.org/10.3390/cancers14163923DOI Listing

Publication Analysis

Top Keywords

individualized treatment
12
treatment decisions
12
causal diagrams
12
treatment effects
12
making individualized
8
treatment
8
clinical decisions
8
regression model
8
entry criteria
8
rct data
8

Similar Publications

Rationale: Chronic pelvic pain syndrome (CPPS) is prevalent and a complex multifactorial condition. The incidence is rising. CPPS patients may benefit from multidisciplinary care in a structured care pathway.

View Article and Find Full Text PDF

BACKGROUND Limb-girdle muscular dystrophy recessive 1 (LGMDR1) is an autosomal recessive degenerative muscle disorder characterized by progressive muscular weakness caused by pathogenic variants in the CAPN3 gene. Desmoplastic small round cell tumors (DSRCT) are ultra-rare and aggressive soft tissue sarcomas usually in the abdominal cavity, molecularly characterized by the presence of a EWSR1::WT1 fusion transcript. Mouse models of muscular dystrophy, including LGMDR1, present an increased risk of soft tissue sarcomas.

View Article and Find Full Text PDF

BACKGROUND This study aimed to analyze the risk factors of central nervous system (CNS) infection caused by reactivation of varicella zoster virus (VZV) and provide reference for the prevention and early diagnosis of VZV-associated CNS infection. MATERIAL AND METHODS A prospective study was conducted on 1030 patients with acute herpes zoster (HZ) admitted to our hospital from January 2021 to June 2023. According to clinical manifestations and auxiliary examinations, they were divided into HZ group of 990 patients and VZV-associated CNS infection group of 40 patients.

View Article and Find Full Text PDF

Background: Practice guidelines recommend patient management based on scientific evidence. Quality indicators gauge adherence to such recommendations and assess health care quality. They are usually defined as adverse event rates, which may not fully capture guideline adherence over time.

View Article and Find Full Text PDF

Purpose: To examine associations between clinical measures (self-reported and clinician-administered) and subsequent injury rates in the year after concussion return to play (RTP) among adolescent athletes.

Methods: We performed a prospective, longitudinal study of adolescents ages 13-18 years. Each participant was initially assessed within 21 days of concussion and again within 5 days of receiving RTP clearance from their physician.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!