A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Relative Entropy of Distance Distribution Based Similarity Measure of Nodes in Weighted Graph Data. | LitMetric

Relative Entropy of Distance Distribution Based Similarity Measure of Nodes in Weighted Graph Data.

Entropy (Basel)

School of Mathematics and Computer Science, Yunnan Minzu University, Kunming 650504, China.

Published: August 2022

Many similarity measure algorithms of nodes in weighted graph data have been proposed by employing the degree of nodes in recent years. Despite these algorithms obtaining great results, there may be still some limitations. For instance, the strength of nodes is ignored. Aiming at this issue, the relative entropy of the distance distribution based similarity measure of nodes is proposed in this paper. At first, the structural weights of nodes are given by integrating their degree and strength. Next, the distance between any two nodes is calculated with the help of their structural weights and the Euclidean distance formula to further obtain the distance distribution of each node. After that, the probability distribution of nodes is constructed by normalizing their distance distributions. Thus, the relative entropy can be applied to measure the difference between the probability distributions of the top important nodes and all nodes in graph data. Finally, the similarity of two nodes can be measured in terms of this above-mentioned difference calculated by relative entropy. Experimental results demonstrate that the algorithm proposed by considering the strength of node in the relative entropy has great advantages in the most similar node mining and link prediction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407273PMC
http://dx.doi.org/10.3390/e24081154DOI Listing

Publication Analysis

Top Keywords

relative entropy
20
distance distribution
12
similarity measure
12
graph data
12
nodes
11
entropy distance
8
distribution based
8
based similarity
8
measure nodes
8
nodes weighted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!