Learnability of the Boolean Innerproduct in Deep Neural Networks.

Entropy (Basel)

Institute of Neural Information Processing, Ulm University, 89081 Ulm, Germany.

Published: August 2022

In this paper, we study the learnability of the Boolean inner product by a systematic simulation study. The family of the Boolean inner product function is known to be representable by neural networks of threshold neurons of depth 3 with only 2n+1 units ( the input dimension)-whereas an exact representation by a depth 2 network cannot possibly be of polynomial size. This result can be seen as a strong argument for deep neural network architectures. In our study, we found that this depth 3 architecture of the Boolean inner product is difficult to train, much harder than the depth 2 network, at least for the small input size scenarios n≤16. Nonetheless, the accuracy of the deep architecture increased with the dimension of the input space to 94% on average, which means that multiple restarts are needed to find the compact depth 3 architecture. Replacing the fully connected first layer by a partially connected layer (a kind of convolutional layer sparsely connected with weight sharing) can significantly improve the learning performance up to 99% accuracy in simulations. Another way to improve the learnability of the compact depth 3 representation of the inner product could be achieved by adding just a few additional units into the first hidden layer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407482PMC
http://dx.doi.org/10.3390/e24081117DOI Listing

Publication Analysis

Top Keywords

inner product
16
boolean inner
12
learnability boolean
8
deep neural
8
neural networks
8
depth network
8
depth architecture
8
compact depth
8
connected layer
8
depth
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!