AI Article Synopsis

  • Current treatments for Alzheimer's disease (AD) are ineffective, but research shows that 2,4-diacetylphloroglucinol (DAPG) significantly reduces beta-amyloid (Aβ) levels without toxicity in various cell models, including transgenic mice.
  • DAPG's reduction of Aβ is linked to increased levels of soluble APPα (sAPPα) through the activity of the ADAM10 protein, while inhibiting ADAM10 impacts sAPPα but only partially affects Aβ levels.
  • The study suggests that different inhibitors affect intracellular trafficking in a cell type-specific manner, highlighting DAPG's potential as a drug for AD by targeting ADAM10 and trafficking, but further optimization for

Article Abstract

There is currently no effective treatment against Alzheimer's disease (AD), although many strategies have been applied to reduce beta-amyloid (Aβ) levels. Here, we investigated 2,4-diacetylphloroglucinol (DAPG) effects on Aβ levels and mechanisms of action. DAPG was the most effective phloroglucinol derivative for reducing Aβ levels, without being toxic, in various models including HEK293 cells overexpressing Swedish mutant amyloid precursor protein (APP) (293sw), primary astrocytes isolated from APPsw/PS1dE9 transgenic mice, and after intrahippocampal injection of DAPG in APPsw/PS1dE9 transgenic mice. DAPG-mediated Aβ reduction was associated with increased soluble APPα (sAPPα) levels mediated by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) but not ADAM17. ADAM10 inhibition in DAPG-treated cells prevented the effects on sAPPα but only partly on intracellular and secreted Aβ. To identify regulators of sAPPα and Aβ secretion, various inhibitors of intracellular trafficking were administered with DAPG. Brefeldin A (BFA) reversed DAPG-mediated changes in Aβ secretion in 293sw cells, whereas golgicide A (GCA) and BFA were effective in primary astrocytes, indicating a cell type-specific regulation of the trafficking. Moreover, GCA or BFA effects on sAPPα, but not Aβ, levels in primary astrocytes resembled those of ADAM10 inhibition, indicating at least partly independent trafficking pathways for sAPPα and Aβ. In conclusion, DAPG might be a promising drug candidate against AD regulating ADAM10 and intracellular trafficking, but optimizing DAPG ability to cross the BBB will be needed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406471PMC
http://dx.doi.org/10.3390/cells11162585DOI Listing

Publication Analysis

Top Keywords

aβ levels
16
intracellular trafficking
12
primary astrocytes
12
sappα aβ
12
9
regulating adam10
8
adam10 intracellular
8
alzheimer's disease
8
appsw/ps1de9 transgenic
8
transgenic mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!