Organ function relies on microvascular networks to maintain homeostatic equilibrium, which varies widely in different organs and during different physiological challenges. The endothelium role in this critical process can only be evaluated in physiologically relevant contexts. Comparing the responses to oxygen flux in primary murine microvascular EC (MVEC) obtained from brain and lung tissue reveals that supra-physiological oxygen tensions can compromise MVEC viability. Brain MVEC lose mitochondrial activity and undergo significant alterations in electron transport chain (ETC) composition when cultured under standard, non-physiological atmospheric oxygen levels. While glycolytic capacity of both lung and brain MVEC are unchanged by environmental oxygen, the ability to trigger a metabolic shift when oxygen levels drop is greatly compromised following exposure to hyperoxia. This is particularly striking in MVEC from the brain. This work demonstrates that the unique metabolism and function of organ-specific MVEC (1) can be reprogrammed by external oxygen, (2) that this reprogramming can compromise MVEC survival and, importantly, (3) that ex vivo modelling of endothelial function is significantly affected by culture conditions. It further demonstrates that physiological, metabolic and functional studies performed in non-physiological environments do not represent cell function in situ, and this has serious implications in the interpretation of cell-based pre-clinical models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406746PMC
http://dx.doi.org/10.3390/cells11162469DOI Listing

Publication Analysis

Top Keywords

mvec brain
8
compromise mvec
8
brain mvec
8
oxygen levels
8
mvec
7
oxygen
6
hyperoxia reprogrammes
4
reprogrammes microvascular
4
microvascular endothelial
4
endothelial cell
4

Similar Publications

Neuroinflammation is an important pathological event contributing to the onset and progression of neurodegenerative diseases. The hyperactivation of microglia triggers the release of excessive proinflammatory mediators that lead to the leaky blood-brain barrier and impaired neuronal survival. Andrographolide (AN), baicalein (BA) and 6-shogaol (6-SG) possess anti-neuroinflammatory properties through diverse mechanisms of action.

View Article and Find Full Text PDF

Organ function relies on microvascular networks to maintain homeostatic equilibrium, which varies widely in different organs and during different physiological challenges. The endothelium role in this critical process can only be evaluated in physiologically relevant contexts. Comparing the responses to oxygen flux in primary murine microvascular EC (MVEC) obtained from brain and lung tissue reveals that supra-physiological oxygen tensions can compromise MVEC viability.

View Article and Find Full Text PDF

Neuroinflammation is believed to play a primary role in the pathogenesis of most neurodegenerative diseases including Alzheimer's disease, Parkinson's disease and schizophrenia. Currently, suitable in vitro neuroinflammation models for studying cellular interactions and inflammatory mechanisms at the neurovascular unit are still scarce. In this study, we established an experimentally flexible tri-culture neuroinflammation model combining murine microglial cells (N11), mouse neuroblastoma Nuro2A cell lines and brain microvascular endothelial MVEC(B3) cells in a transwell co-culture system stimulated with lipopolysaccharides.

View Article and Find Full Text PDF

We previously examined the effect of brain microvascular endothelial cell (MVEC) transplantation on rat white matter infarction, and found that MVEC transplantation promoted remyelination of demyelinated axons in the infarct region and reduced apoptotic death of oligodendrocyte precursor cells (OPCs). We also found that the conditioned medium (CM) from cultured MVECs inhibited apoptosis of cultured OPCs. In this study, we examined contribution of extracellular vesicles (EVs) contained in the CM to its inhibitory effect on OPC apoptosis.

View Article and Find Full Text PDF

We previously showed that transplantation of brain microvascular endothelial cells (MVECs) greatly stimulated remyelination in the white matter infarct of the internal capsule (IC) induced by endothelin-1 injection and improved the behavioral outcome. In the present study, we examined the effect of MVEC transplantation on the infarct volume using intermittent magnetic resonance image and on the behavior of oligodendrocyte lineage cells histochemically. Our results in vivo show that MVEC transplantation reduced the infarct volume in IC and apoptotic death of oligodendrocyte precursor cells (OPCs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!