Antarctic krill is a potential and attractive resource for consumption. However, most Antarctic krill meat is used to produce primary products with low commercial value, with few highly processed products. This study aimed to evaluate and improve the gelling properties of Antarctic krill surimi, with Pacific white shrimp surimi as control. Compared with Pacific white shrimp surimi, the lower β-sheet content and protein aggregation degree had a severe impact on the formation of the gel network of Antarctic krill surimi, which resulted in weaker breaking force, gel strength, and viscoelasticity (p < 0.05). Moreover, water retention capacity and molecular forces had a positive effect on the stability of the gel matrix of shrimp surimi. Thus, the high α-helix/β-sheet ratio, weak intermolecular interactions, and low level of protein network cross-linkage were the main reasons for the poor quality of Antarctic krill surimi. On this basis, the effects of six polysaccharides on the texture properties of Antarctic krill surimi were studied. Chitosan, konjac glucomannan, sodium carboxyl methyl cellulose, and waxy maize starch resulted in no significant improvement in the texture properties of Antarctic krill surimi (p > 0.05). However, the addition of ι-carrageenan (2%) or κ-carrageenan (1~2%) is an effective way to improve the texture properties of Antarctic krill surimi (p < 0.05). These findings will contribute to the development of reconstituted Antarctic krill surimi products with high nutritional quality and the promotion of deep-processing products of Antarctic krill meat.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407480PMC
http://dx.doi.org/10.3390/foods11162517DOI Listing

Publication Analysis

Top Keywords

antarctic krill
48
krill surimi
32
properties antarctic
20
shrimp surimi
16
antarctic
12
krill
12
pacific white
12
white shrimp
12
surimi
12
texture properties
12

Similar Publications

Arsenic toxicity in Antarctic krill oil and its impact on human intestinal cells.

Ecotoxicol Environ Saf

January 2025

East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China. Electronic address:

Arsenic is a pervasive environmental pollutant that can bioaccumulate in Antarctic krill through the food chain, posing potential risks to human health. This study investigates the toxic effects of arsenic in Antarctic krill oil (AKO) on Caco-2 cells, focusing on oxidative stress and apoptosis induction. AKO is nutrient-rich and contains various arsenic species, including arsenite (As³⁺), arsenate (As⁵⁺), dimethyl arsinic acid (DMA), and arsenobetaine (AsB), each exhibiting different toxic potencies.

View Article and Find Full Text PDF

The Effects of Cooking Methods on Gel Properties, Lipid Quality, and Flavor of Surimi Gels Fortified with Antarctic Krill () Oil as High Internal Phase Emulsions.

Foods

December 2024

State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, Dalian Technology Innovation Center for Chinese Pre-made Food, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.

In this study, silver carp surimi products enriched with Antarctic krill oil high internal phase emulsions (AKO-HIPEs) were cooked using steaming (STE), microwave heating (MIC), and air-frying (AIR), respectively. The gel and flavor properties, lipid quality and stability were investigated. Compared to the MIC and AIR groups, the STE surimi gel added with HIPEs had better texture properties, exhibiting higher water-holding capacity and a more homogeneous structure, while the air-frying treatment resulted in visually brighter surimi products.

View Article and Find Full Text PDF

Hepatic and intestinal insights into the molecular mechanisms of dietary Antarctic krill-induced body color differentiation in Plectropomus leopardus.

Genomics

January 2025

MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China; Southern Marine Science and Engineer Guangdong Laboratory, Guangzhou 511458, China. Electronic address:

Antarctic krill (Euphausia superba), which is rich in astaxanthin, has been widely utilized as a dietary supplement in fish aquaculture. Our study was to feed juvenile leopard coral grouper (Plectropomus leopardus) a diet containing 50 % Antarctic krill, revealing significant body color differentiation between a reddened group (BKR) and a non-reddened group (BKB), followed by comparative analysis with the control group (BCon) without krill supplementation. Histological analysis and carotenoid content in the liver and intestine were differentially regulated in color-differentiated individuals.

View Article and Find Full Text PDF

Temporal variability in mortality and recruitment jointly influence the periodic fluctuations in Antarctic krill populations.

Mar Environ Res

December 2024

College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Center for Polar Research, Shanghai Ocean University, Shanghai 201306, China; Polar Marine Ecosystem Group, The Key Laboratory of Sustainable Exploitation of Oceanic Fisheries Resources, Ministry of Education, Shanghai 201306, China; National Engineering Research Center for Oceanic Fisheries, Shanghai 201306, China. Electronic address:

Antarctic krill (Euphausia superba) is a key part of the food web in the Southern Ocean ecosystem. Significant inter-annual fluctuations in population dynamics make stock assessment and management of its population a significant challenge. To better understand the population dynamics and fluctuation of krill, a survey-based age-structured catch-at-length model (ACL) is used to estimate the periodic fluctuations, based on length data collected from scientific surveys under the US Antarctic Marine Living Resources (AMLR) Program between 1992 and 2011.

View Article and Find Full Text PDF

Background: The Antarctic krill Euphausia superba is a keystone species in the Southern Ocean ecosystem. This crustacean has an ancestral clock whose main components have been identified and characterized in the past few years. However, the second feedback loop, modulating clock gene expression through two transcription factors, VRI and PDP1, has yet to be described.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!