A novel rice-based snack enriched with chicory root flour (CRF) was developed by twin-screw extrusion. Chicory ( L.) is one of the promising medicinal plants for the development of innovative food and may be considered a functional food ingredient. Central composite design (CCD) was employed to generate snack formulations by varying feed moisture (M, 16.3-22.5%), screw speed (SS, 500-900 rpm) and CRF content (20-40%). The optimization according to artificial neural network modeling and a genetic algorithm was applied to define optimal process conditions (17.6% moisture, 820 rpm and 24.1% of CRF) for obtaining the product with the highest expansion (3.34), crispiness (3.22 × 10), volume (2040 m), degree of gelatinization (69.70%) and good color properties. Bulk density (110.33 g/L), density (250 kg/m), and hardness (98.74 N) resulted in low values for the optimal sample. The descriptive sensory analysis evaluated low hardness and bitterness, with high crispiness for the optimal extrudate. This study points to the possibility of a novel chicory enriched extrudate production with desirable physicochemical and sensory properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9407501 | PMC |
http://dx.doi.org/10.3390/foods11162393 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!