Breast cancer has evolved as the most lethal illness impacting women all over the globe. Breast cancer may be detected early, which reduces mortality and increases the chances of a full recovery. Researchers all around the world are working on breast cancer screening tools based on medical imaging. Deep learning approaches have piqued the attention of many in the medical imaging field due to their rapid growth. In this research, mammography pictures were utilized to detect breast cancer. We have used four mammography imaging datasets with a similar number of 1145 normal, benign, and malignant pictures using various deep CNN (Inception V4, ResNet-164, VGG-11, and DenseNet121) models as base classifiers. The proposed technique employs an ensemble approach in which the Gompertz function is used to build fuzzy rankings of the base classification techniques, and the decision scores of the base models are adaptively combined to construct final predictions. The proposed fuzzy ensemble techniques outperform each individual transfer learning methodology as well as multiple advanced ensemble strategies (Weighted Average, Sugeno Integral) with reference to prediction and accuracy. The suggested Inception V4 ensemble model with fuzzy rank based Gompertz function has a 99.32% accuracy rate. We believe that the suggested approach will be of tremendous value to healthcare practitioners in identifying breast cancer patients early on, perhaps leading to an immediate diagnosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9406655 | PMC |
http://dx.doi.org/10.3390/diagnostics12081812 | DOI Listing |
Sci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Breast Surgery, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, China.
Early prediction of patient responses to neoadjuvant chemotherapy (NACT) is essential for the precision treatment of early breast cancer (EBC). Therefore, this study aims to noninvasively and early predict pathological complete response (pCR). We used dynamic ultrasound (US) imaging changes acquired during NACT, along with clinicopathological features, to create a nomogram and construct a machine learning model.
View Article and Find Full Text PDFMetaplastic breast cancer (MpBC) is a highly chemoresistant subtype of breast cancer with no standardized therapy options. A clinical study in anthracycline-refractory MpBC patients suggested that nitric oxide synthase (NOS) inhibitor NG-monomethyl-l-arginine (L-NMMA) may augment anti-tumor efficacy of taxane. We report that NOS blockade potentiated response of human MpBC cell lines and tumors to phosphoinositide 3-kinase (PI3K) inhibitor alpelisib and taxane.
View Article and Find Full Text PDFthe evolution of axillary management in breast cancer has witnessed significant changes in recent decades, leading to an overall reduction in surgical interventions. There have been notable shifts in practice, aiming to minimize morbidity while maintaining oncologic outcomes and accurate staging for newly diagnosed breast cancer patients. These advancements have been facilitated by the improved efficacy of adjuvant therapies.
View Article and Find Full Text PDFthe axillary reverse mapping (ARM) procedure aims to preserve the lymphatic drainage structures of the upper extremity during axillary surgery for breast cancer, thereby reducing the risk of lymphedema in the upper limb. Material and this prospective study included 57 patients with breast cancer who underwent SLNB and ARM. The sentinel lymph node (SLN) was identified using a radioactive tracer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!