Although carbon materials are widely used in surface engineering, particularly graphene (GP) and carbon nanotubes (CNTs), the application of these nanocomposites for the development of antibiofilm marine surfaces is still poorly documented. The aim of this study was, thus, to gather and discuss the relevant literature concerning the antifouling performance of carbon-based coatings against marine micro- and macrofoulers. For this purpose, a PRISMA-oriented systematic review was conducted based on predefined criteria, which resulted in the selection of thirty studies for a qualitative synthesis. In addition, the retrieved publications were subjected to a quality assessment process based on an adapted Methodological Index for Non-Randomized Studies (MINORS) scale. In general, this review demonstrated the promising antifouling performance of these carbon nanomaterials in marine environments. Further, results from the revised studies suggested that functionalized GP- and CNTs-based marine coatings exhibited improved antifouling performance compared to these materials in pristine forms. Thanks to their high self-cleaning and enhanced antimicrobial properties, as well as durability, these functionalized composites showed outstanding results in protecting submerged surfaces from the settlement of fouling organisms in marine settings. Overall, these findings can pave the way for the development of new carbon-engineered surfaces capable of preventing marine biofouling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404944 | PMC |
http://dx.doi.org/10.3390/antibiotics11081102 | DOI Listing |
Heliyon
January 2025
Department of Applied Chemistry, Faculty of Chemistry, Razi University, 67144-14971, Kermanshah, Iran.
Low performance and the high fouling tendency of Polyetherimide (PEI) membranes prevent their widespread commercial utility. In this study, we utilized a deep eutectic solvent (DES) as a versatile agent for surface modification of the PEI membrane using a simple and sustainable method. To attain an efficient PEI membrane, modeling and optimization of the modification condition were conducted via response surface methodology (RSM).
View Article and Find Full Text PDFLangmuir
January 2025
State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China.
Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.
View Article and Find Full Text PDFAnal Chem
January 2025
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
High-performance isolation of exosomes as a promising liquid biopsy target is of great importance for both fundamental research and clinical applications. This is, however, challenged by the prevalent heterogeneity of exosomes and the highly complex nature of biosamples. Here, we introduce the use of a CD81-targeting peptide as a building block for tailoring molecular baits for exosome isolation and payload analysis in clinical biofluids.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil-water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups.
View Article and Find Full Text PDFWater Environ Res
January 2025
Zhejiang Key Laboratory of Petrochemical Environmental Pollution Control, Zhejiang Ocean University, Zhoushan, P. R. China.
The discharge of oil-laden wastewater from industrial processes and the frequent occurrence of oil spills pose severe threats to the ecological environment and human health. Membrane materials with special wettability have garnered attention for their ability to achieve efficient oil-water separation by leveraging the differences in wettability at the oil-water interface. These materials are characterized by their simplicity, energy efficiency, environmental friendliness, and reusability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!