Chronic kidney disease (CKD) is a common and worldwide health problem and one of the most important causes of morbidity and mortality. Most primary research on this disease requires evaluating the fibrosis index in animal model kidneys, specifically using Masson's trichrome stain. Different programs are used to calculate the percentage of fibrosis; however, the analysis is time-consuming since one image must be performed at a time. CellProfiler™ is a program designed to analyze data obtained from biological samples and can process multiple images through pipelines, and the results can be exported to databases. This article explains how CellProfiler™ can be used to automatically analyze kidney histology photomicrographs from samples stained with Masson's trichrome stain to assess the percentage of fibrosis in an experimental animal model of CKD. A pipeline was created to analyze Masson's trichrome-stained slides in a model of CDK induced by adenine at doses of 50 mg/kg and 100 mg/kg, in addition to samples with the vehicle (75% glycerin). The results were compared with those obtained by ImageJ, and no significant differences were found between both programs. The CellProfiler™ pipeline made here is a reliable, fast, and easy alternative for kidney fibrosis analysis and quantification in experimental animal models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404825 | PMC |
http://dx.doi.org/10.3390/biology11081227 | DOI Listing |
FASEB J
January 2025
Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Renal fibrosis is a common pathological process in various chronic kidney diseases. The accumulation of senescent renal tubular epithelial cells (TECs) in renal tissues plays an important role in the development of renal fibrosis. Eliminating senescent TECs has been proven to effectively reduce renal fibrosis.
View Article and Find Full Text PDFTransplant Direct
March 2024
Department of Nephrology, Odense University Hospital, Odense, Denmark.
Background: Kidney fibrosis is a suggested cause of kidney failure and premature mortality. Because collagen type VI is closely linked to kidney fibrosis, we aimed to evaluate whether urinary endotrophin, a collagen type VI fragment, is associated with graft failure and mortality among kidney transplant recipients (KTR).
Methods: In this prospective cohort study, KTR with a functioning graft ≥1-y posttransplantation were recruited; 24-h urinary endotrophin excretion was measured using an ELISA method.
Front Pharmacol
January 2025
Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, China.
Renal fibrosis is one of the main pathological features of chronic kidney disease (CKD), and its treatment has been a hot research topic. Recent studies have shown that stem cell therapy can repair renal pathological changes and slow the progression of CKD. In addition, a large number of experiments have confirmed that traditional Chinese medicine (TCM), especially Chinese medicine compound preparations, has the advantage of multitargeting interventions to improve renal fibrosis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2025
Department of Urology, Beilun People's Hospital, Ningbo, Zhejiang, China.
Renal ischemia-reperfusion (IR) induces tissue hypoxia, resulting in disrupted energy metabolism and heightened oxidative stress. These factors contribute to tubular cell damage, which is a leading cause of acute kidney injury (AKI) and can progress to chronic kidney disease (CKD). The excessive generation of reactive oxygen species (ROS) plays a crucial role in the pathogenesis of AKI.
View Article and Find Full Text PDFFEBS J
January 2025
Department of Urology, Renmin Hospital of Wuhan University, China.
In our research, we constructed models of renal ischemia-reperfusion (I/R)-exposed acute kidney injury (AKI) and unilateral ureteral obstruction (UUO)-stimulated renal fibrosis (RF) in C57BL/6 mice and HK-2 cells. We firstly authenticated that oral pinocembrin (PIN) administration obviously mitigated tissue damage and renal dysfunction induced by I/R injury, and PIN attenuated UUO-caused RF, as confirmed by the reduced expression of fibrotic markers as well as hematoxylin-eosin (H&E), Sirius red, immunohistochemistry, and Masson staining. Meanwhile, the beneficial role of PIN was again demonstrated in HK-2 cells with hypoxia-reoxygenation (H/R) or transforming growth factor beta-1 (TGF-β1) treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!