A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Assessing the Effectiveness of Correlative Ecological Niche Model Temporal Projection through Floristic Data. | LitMetric

Correlative ecological niche modelling (ENM) is a method widely used to study the geographic distribution of species. In recent decades, it has become a leading approach for evaluating the most likely impacts of changing climate. When used to predict future distributions, ENM applications involve transferring models calibrated with modern environmental data to future conditions, usually derived from Global Climate Models (GCMs). The number of algorithms and software packages available to estimate distributions is quite high. To experimentally assess the effectiveness of correlative ENM temporal projection, we evaluated the transferability of models produced using 12 different algorithms on historical and modern data. In particular, we compared predictions generated using historical data and projected to the modern climate (simulating a "future" condition) with predictions generated using modern distribution and climate data. The models produced with the 12 ENM algorithms were evaluated in geographic (range size and coherence of predictions) and environmental space (Schoener's D index). None of the algorithms shows an overall superior capability to correctly predict future distributions. On the contrary, a few algorithms revealed an inadequate predictive ability. Finally, we provide hints that can be used as guideline to plan further studies based on the adopted general workflow, useful for all studies involving future projections.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405103PMC
http://dx.doi.org/10.3390/biology11081219DOI Listing

Publication Analysis

Top Keywords

effectiveness correlative
8
correlative ecological
8
ecological niche
8
temporal projection
8
predict future
8
future distributions
8
models produced
8
predictions generated
8
data
5
algorithms
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!