The United Nations (UN) estimate that the global population will reach 10 billion people by 2050. These projections have placed the agroeconomic industry under immense pressure to meet the growing demand for food and maintain global food security. However, factors associated with climate variability and the emergence of virulent plant pathogens and pests pose a considerable threat to meeting these demands. Advanced crop improvement strategies are required to circumvent the deleterious effects of biotic and abiotic stress and improve yields. Metabolomics is an emerging field in the omics pipeline and systems biology concerned with the quantitative and qualitative analysis of metabolites from a biological specimen under specified conditions. In the past few decades, metabolomics techniques have been extensively used to decipher and describe the metabolic networks associated with plant growth and development and the response and adaptation to biotic and abiotic stress. In recent years, metabolomics technologies, particularly plant metabolomics, have expanded to screening metabolic biomarkers for enhanced performance in yield and stress tolerance for metabolomics-assisted breeding. This review explores the recent advances in the application of metabolomics in agricultural biotechnology for biomarker discovery and the identification of new metabolites for crop improvement. We describe the basic plant metabolomics workflow, the essential analytical techniques, and the power of these combined analytical techniques with chemometrics and chemoinformatics tools. Furthermore, there are mentions of integrated omics systems for metabolomics-assisted breeding and of current applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405339 | PMC |
http://dx.doi.org/10.3390/biology11081156 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!