Toxic metal pollution is a global issue, and the use of metal-accumulating plants to clean contaminated ecosystems is one of the most rapidly growing ecologically beneficial and cost-effective technologies. In this study, samples of sediment and three mangrove species (Excoecaria agallocha, Avicennia officinalis, Sonneratia apetala) were collected from the world’s largest mangrove forest (along the Northern Bay of Bengal Coast) with the aim of evaluating metal concentrations, contamination degrees, and phytoremediation potentiality of those plants. Overall, the heavy metals concentration in sediment ranged from Cu: 72.41−95.89 mg/kg; Zn: 51.28−71.20 mg/kg; Fe: 22,760−27,470 mg/kg; Mn: 80.37−116.37 mg/kg; Sr: 167.92−221.44 mg/kg. In mangrove plants, the mean concentrations were in the order of E. agallocha > A. officinalis > S. apetala. The mean (± SD) concentration of each metal in the plant tissue (root) was found following the descending order of Fe (737.37 ± 153.06) > Mn (151.13 ± 34.26) > Sr (20.98 ± 6.97) > Cu (16.12 ± 4.34) > Zn (11.3 ± 2.39) mg/kg, whereas, in the leaf part, the mean concentration (mg/kg) of each metal found in the order of Fe (598.75 ± 410.65) > Mn (297.27 ± 148.11) > Sr (21.40 ± 8.71) > Cu (14.25 ± 2.51) > Zn (12.56 ± 2.13). The contamination factor (CF) values for the studied metals were in the descending order of Cu > Sr > Zn > Fe > Mn. The values of Igeo (Geo-accumulation index) and CF showed that the area was unpolluted to moderately polluted by Zn, Fe, Mn, Cu and Sr. Enrichment factor (EF) values in both sampling stations portrayed moderate to minimum enrichment. Phytoremediation potentiality of the species was assessed by bio-concentration factor (BCF) and translocation factor (TF). BCF values showed less accumulation for most of the heavy metals (<1) except Mn which was highly accumulated in all mangrove plants. The translocation factor (TF) values depicted that most of the heavy metals were strongly accumulated in plant tissues (>1). However, the BCF value depicts that Mn was highly bioconcentrated in E. agallocha, but the translocation on leaves tissue were minimum, which reveals that E. agallocha is phytoextractor for Mn, and accumulated in root tissues. All the examined plants can be used as phytoextractors as they have bioconcentration factors <1 and translocation factors >1. However, A. officinalis is clearly more suitable for metal extraction than S. apetala and E. agallocha in terms of hyper-metabolizing capabilities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405028 | PMC |
http://dx.doi.org/10.3390/biology11081144 | DOI Listing |
Int J Biol Macromol
December 2024
Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, P.O. Box 48175-861, Sari 4847193698, Iran; Thalassemia Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran. Electronic address:
The environmental persistence of pharmaceuticals represents a significant threat to aquatic ecosystems and human health, while limitations in conventional wastewater treatment methods underscore the urgent need for innovative and eco-friendly degradation strategies. Photobiocatalytic approaches provide a promising solution for the effective degradation of pharmaceutical contaminants by harnessing the synergistic effects of both photocatalysts and biocatalysts. In this study, we developed a photobiocatalytic composite by co-immobilizing laccase enzyme and zinc oxide nanoparticles on bacterial cellulose synthesized from orange peel waste.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea. Electronic address:
The improper handling and uncontrolled discharge of toxic organic dyes result in significant adverse effects on both human health and the environment. This study investigates the fabrication of SnO₂, yttrium and cobalt dual-doped SnO₂ (YCSn), chitosan-capped SnO₂ (CS*Sn), and chitosan-capped yttrium and cobalt dual-doped SnO₂ (CS*YCSn) nanoparticles using a one-step coprecipitation method for the photocatalytic degradation of methylene blue (MB) under visible light irradiation. Characterization techniques including X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM), and ultraviolet-visible (UV-Vis) spectrophotometry confirm the successful synthesis of biodegradable CS*YCSn nanoparticles.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
November 2024
Advanced Institute of Technology and Innovation (IATI), 50751-310 Recife, Pernambuco, Brazil.
Background: This study aimed to produce, characterize, and apply a biosurfactant as a bioremediation tool for oil-contaminated coastal environments.
Methods: The biosurfactant was produced in a medium containing 5.0% corn steep liquor and 1.
Environ Pollut
December 2024
Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China. Electronic address:
The proliferation of weeds, pests, and plant diseases in crop cultivation has driven the increased application of herbicide lactofen, insecticide acetamiprid, and fungicide carbendazim, contributing to environmental pollution. Microorganisms are requently employed to remove pesticide residues from the environment. However, Liquid bacterial agents encounter difficulties in transportation and preservation during application and the current immobilized bacterial agents have a single degradation function.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Faculty of Science and Technology, Norwegian University of Life Sciences, P.O. Box 5003, Aas, 1430, Norway.
Primary sludge can serve as an internal carbon source for denitrification in wastewater treatment plants (WWTPs). This study explores the use of alkaline treatment to produce a fermentation broth from primary sludge, which predominantly contains short-chain volatile fatty acids (VFAs), with acetic acid and propionic acid making up over 65% of the total VFAs. The performance of this fermentation broth as a sole carbon source for denitrification was compared with that of sodium acetate, acetic acid, methanol, and ethanol in both biofilm and activated sludge systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!