Intercropping plants for phytoremediation is a promising strategy in heavy metal-polluted soils. In this study, two typical greening plant species, () and (), were intercropped in a Cd/Cu/Zn-contaminated field. The phytoremediation efficiency was investigated by measuring the plant biomass, metal concentration, and mycorrhizal colonisation, as well as the effects on soil properties, including soil pH; soil total N; and available N, P, K, Cd, Cu, and Zn. The results showed that, compared with the monoculture system, intercropping significantly lowered the available Cd, Cu, and Zn contents, significantly improved the total and available N contents in rhizosphere soils of both plant species, and increased the hyphae colonisation rate of . In both plants, intercropping significantly improved the total plant biomass. Furthermore, the concentrations Zn and Cd in the root of and Cu concentration in the root of were enhanced by 58.16%, 107.74%, and 20.57%, respectively. Intercropping resulted in plants accumulating higher amounts of Cd, Cu, and Zn. This was particularly evident in the total amount of Cd in , which was 2.2 times greater than that in the monoculture system. Therefore, this study provides a feasible technique for improving phytoremediation efficiency using greening plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405393 | PMC |
http://dx.doi.org/10.3390/biology11081133 | DOI Listing |
Heliyon
January 2025
Academy of Agriculture and Forestry, Qinghai University, Xining, 810016, China.
Trifluralin (FLL) is extensively used in rapeseed fields in the Qinghai-Tibet Plateau (QTP) region. However, the degradation kinetics of FLL in this area and its impact on environmental microbial communities are not yet known. To investigate the degradation patterns and ecological benefits of FLL, this study established a comprehensive method for detecting FLL residues and selected efficient degrading bacterial strains.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
Polycyclic aromatic compounds (PACs) are pervasive environmental contaminants derived from diverse sources including pyrogenic (e.g., combustion processes), petrogenic (e.
View Article and Find Full Text PDFMicrob Biotechnol
January 2025
Laboratory of Microbiology, Institute of Biology, University of Neuchatel, Neuchatel, Switzerland.
The inadequate removal of pharmaceuticals and personal care products (PPCPs) by traditional wastewater treatment plants (WWTPs) poses a significant environmental and public health challenge. Residual PPCPs find their way into aquatic ecosystems, leading to bioaccumulation in aquatic biota, the dissemination of antibiotic resistance genes (ARGs), and contamination of both water sources and vegetables. These persistent pollutants can have negative effects on human health, ranging from antibiotic resistance development to endocrine disruption.
View Article and Find Full Text PDFInt J Phytoremediation
January 2025
Department of Agronomy, Federal Rural University of Pernambuco, Recife, Brazil.
Co-cropping of hyperaccumulators is still poorly understood, while associations between hyperaccumulators and other plant species may promote beneficial plant interactions and lead to increased metal phytoextraction from contaminated soils. The aim of this study was to evaluate the phytoextraction potential of the Ni-hyperaccumulator in different co-cropping combinations with and . Plants were grown in ultramafic soil in a growth chamber for 45 days and Al, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn concentrations in roots and leaves were analyzed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!