A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Rumen Fermentation and Microbiome Responses to Enzymatic Hydrolysate of Cottonseed Protein Supplementation in Continuous In Vitro Culture. | LitMetric

AI Article Synopsis

  • The study assessed the impact of varying levels of enzymatic hydrolysate of cottonseed protein (ECP) and yeast culture on gas production and fermentation in vitro, using a specific experimental setup over 48 hours.
  • Results showed that yeast culture significantly increased gas production, ammonia nitrogen concentration, microbial protein levels, and certain fatty acid proportions, while the ECP also enhanced some parameters but to a lesser extent.
  • Yeast supplementation led to notable changes in microbial diversity, particularly affecting specific bacterial phyla, whereas ECP supplementation had a minimal impact on bacterial diversity.

Article Abstract

This study aimed to evaluate the effect of enzymatic hydrolysate of cottonseed protein (ECP) on the kinetic of gas production, rumen fermentation characteristics, and microbial diversity in continuous in vitro culture with a single factorial design of supplementation with various concentrations of ECP or yeast culture. Treatments were control (without supplementation, CON), supplementation with 10 g/kg Diamond-V XP yeast culture of substrate (XP), and supplementation with 6, 12 and 18 g/kg ECP of substrate (ECP1, ECP2, ECP3), each incubated with 30 mL of buffered incubation fluids and 200 mg of fermentation substrate in graduated glass syringes fitted with plungers for 48 h. Compared with the CON treatment, supplementation of XP yeast culture increased the cumulative gas production at 12 and 24 h, the concentration of ammonia nitrogen (NH3-N) concentration at 24 and 36 h, the concentration of microbial protein (MCP) concentration at 24 and 48 h, the molar butyrate proportion at 12, 24, and 48 h, the molar valerate proportion at 48 h, and the ratio of non-glucogenic to glucogenic acids (p < 0.05). Compared with the CON treatment, the concentration of MCP and the molar propionate proportion at 12 h were higher in the ECP1 treatment (p < 0.05); the cumulative gas production at 2, 4, and 12 h, the concentration of NH3-N at 36 h and the molar valerate proportion at 48 h were higher in the ECP2 treatment (p < 0.05); the cumulative gas production at 2, 12, and 48 h, the concentration of NH3-N at 12 and 36 h, the concentration of MCP at 12, 36, and 48 h, the molar butyrate proportion at 12 and 48 h, and the molar valerate proportion at 48 h were higher in the ECP3 treatment (p < 0.05). Compared with the CON treatment, supplementation with XP yeast culture significantly altered the relative abundance of the phyla Firmicutes, Kiritimatiellaeota, and Proteobacteria, while supplementation with ECP had minimal effect on bacterial diversity. The prediction of bacterial functions showed that the main gene functions of rumen bacteria are associated with carbohydrate metabolism, amino acid metabolism, and membrane transport. The findings of this study suggest that ECP can be used as a superior feed ingredient for ruminants, the suitable level of ECP was 18 g/kg in vitro experiment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9405472PMC
http://dx.doi.org/10.3390/ani12162113DOI Listing

Publication Analysis

Top Keywords

gas production
16
yeast culture
16
compared con
12
con treatment
12
cumulative gas
12
production concentration
12
molar valerate
12
valerate proportion
12
proportion higher
12
treatment 005
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!