The study covers milk yield and composition data for 17,468 Polish Holstein-Friesian cows. Methane production (g/lactation per cow, MP) for dairy cow were predicted using three methane production equations (MPE) that took into account: milk yield (MPE1), energy corrected milk (MPE2) and both milk protein concentration (%), and energy-corrected milk (MPE3). The average amounts of methane produced for each cow per lactation were 31,089 g, 46,487 g, and 51,768 g for MPE1, MPE2, and MPE3, respectively. Repeatability models were used to estimate genetic parameters for MP. The estimated heritabilities for MPE1, MPE2, and MPE3 were 0.30, 0.24, and 0.24, respectively, with a standard error of 0.01. High genetic correlations (>0.76) were obtained between methane and milk yield, protein, fat, lactose and dry matter contents in milk for MPE1, MPE2 and MPE3. Still, a moderate genetic correlation (0.34) was obtained between methane and fat content (MPE1); the standard error of the estimated genetic correlation was less than 0.05. The results of the current study indicate that genetic selection aimed to reduce MP in dairy cows is possible. However, such direct genetic selection could cause a negative genetic response in milk yield and composition due to negative genetic correlations between MP and milk yield and composition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9404742PMC
http://dx.doi.org/10.3390/ani12162073DOI Listing

Publication Analysis

Top Keywords

milk yield
20
yield composition
12
mpe1 mpe2
12
mpe2 mpe3
12
milk
11
genetic
9
genetic parameters
8
methane production
8
standard error
8
genetic correlations
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!